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ABSTRACT:  
The environment provides numerous benefits for human well-being, such as ecosystem services. 
These services directly and indirectly depend on the physical state of the ecosystem. However, the 
over-exploitation of natural resources along with socio-economic factors, i.e. economic growth, 
poverty, agriculture expansion, population growth and weak environmental governance and regulation 
for fulfilling the human needs for food, fuel, and shelter, is leading to the degradation of the ecological 
health of an area. Therefore, monitoring and assessment of spatial and temporal changes in the ecology 
of a region in terms of vital ecological services is very critical and would help the decision-makers to 
develop and plan appropriate adaptation and mitigation measures for the conservation of natural 
ecosystems at various scales to ensure environmental sustainability. 
The present study aimed to assess the ecological status of the Mahi Bajaj Sagar catchment area in 
Rajasthan (India) from the year 2000 to 2020, using remote sensing-based indices. Indicators such as 
greenness, dryness, and heat index have been selected as per the pressure-state-response (PSR) 
framework. Multi-spectral remote sensing data and image processing methods have been used to 
estimate these indicators, and a remote sensing-based Ecological Status Index (RSBI) has been 
generated by their integration using the principal component analysis (PCA) to assess the ecological 
status of the Mahi Bajaj Sagar catchment.  
Findings from the study indicate a consistent decline in the overall ecological status of the Mahi Bajaj 
catchment, where decreased forest areas have a pronounced effect on ecological health. Interestingly, 
approximately 43.6% of the area displayed resilience to changes in ecological status; however, 36.4% 
of the area exhibited signs of ecological degradation. 
Our study underscores the efficacy of a remote sensing-based approach in quantifying and detecting 
ecological changes, offering a promising methodology for monitoring and assessing the ecological 
health of large areas that can help promote environmental sustainability. 
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1. Introduction 

 
A sustainable environment seeks to provide essential ecosystem services to the 

present generation while safeguarding the needs of future generations. Policymakers must 
conduct thorough assessments and continuous monitoring of the environment to create 
comprehensive and effective policies to achieve this. The Millennium Ecosystem 
Assessment (MEA, 2005) defines the benefits provided by nature as "ecosystem services." 
These services are crucial in maintaining the ecological balance among ecosystem 
components, and any ecological degradation can diminish these services. For instance, 
forests offer services such as climate regulation, water filtration, food, timber, and 
medicines (Lambrechts et al., 2009; Anderegg et al., 2013). However, deforestation 
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negatively impacts these services, leading to the deterioration of ecological conditions. 
Similarly, increased urbanization from the conversion of agricultural land alters food 
production and shelter availability (Kanninen et al., 2007), thereby disrupting ecological 
balance. 

A decline in ecological health results in a reduction of ecosystem services, leading 
to habitat loss and diminished socio-economic values. This deterioration adversely impacts 
community livelihoods and well-being because of a decline in the availability of ecological 
services. Environmental and ecological degradation can reduce agricultural productivity, 
increase health risks due to poor environmental quality, and lead to the erosion of culturally 
significant sites. Economic activities that rely on natural habitats, such as fishing and 
logging, are threatened, exacerbating poverty and food insecurity (MEA, 2005; Gordon et 
al., 2021). Essential ecosystem services like water purification, soil fertility, and pollination 
are critical to community well-being. Their loss increases resource management costs, 
reduces the availability of clean water and food, and disrupts traditional practices related 
to health and agriculture. This degradation not only affects economic stability and health 
but also weakens the traditional ecological knowledge that communities depend on for 
their sustainability (MEA, 2005). The erosion of cultural and socio-economic values 
undermines community identity and social cohesion. Traditional livelihoods associated 
with cultural practices can be lost, leading to economic instability and a decline in tourism 
revenues. Additionally, the disruption of cultural practices and social structures negatively 
impacts mental health and reduces community resilience (Berkes, 2008; Gordon et al., 
2021). Therefore, accurate ecological quantification is essential for policymakers to frame 
and implement sustainable policies. 

Today, global ecosystems face unprecedented human-induced disturbances, 
leading to significant environmental fluctuations (McDonnell et al., 2016). The increasing 
demands of human populations have driven a substantial expansion of built-up areas 
within natural landscapes, causing widespread disruptions to ecosystems at various scales 
(Williams et al., 2009). These large-scale disturbances have profound effects on the global 
carbon cycle (Baldocchi et al., 2008) and exacerbate climate change. Consequently, there 
is a growing need for models that can detect spatial and temporal variations in ecological 
status to inform policy decisions. Recent technological advancements have provided 
abundant earth surface data, enabling more effective ecosystem monitoring and offering 
robust insights into ecological conditions across different scales (Qiu et al., 2016). 

There are multiple approaches to assessing and monitoring ecological status, 
including structure-based methods focusing on species, function-based methods related to 
goods and services, and process-based methods (e.g., nutrient cycling, photosynthesis, and 
primary productivity) (Zhang et al., 2023). While monitoring and evaluating one or more 
variables relevant to the regional ecosystem can provide historical information, these 
methods may not offer a complete picture. Therefore, there is a need to monitor 
ecosystems from various perspectives to obtain a comprehensive understanding of the 
status and level of degradation at regional scales. Interest in assessing ecological status has 
increased significantly in recent years (1990–2024), particularly with the growing 
application of remote sensing technology (Sishodia et al., 2020). 

In contemporary times, remote sensing and Geographic Information Systems 
(GIS) have become essential tools for quantifying ecological status and aiding 
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policymakers in resource management planning (Dahdouh‐Guebas, 2002). These tools are 
commonly integrated to study various natural resources and their attributes (Patil et al., 
2015; Rajitha et al., 2007; Saraf and Choudhury, 1998; Wilkinson, 1996). The combination 
of remote sensing and GIS provides valuable insights into the spatial distribution, extent, 
and potential of natural resources, which are crucial for formulating sustainable 
development strategies (Rao, 2000). These technologies have been employed to gather 
information on ecosystem functioning (Kasischke et al., 1997; Tang et al., 2017), soil 
characteristics (Mu et al., 2007), surface water (Bastiaanssen et al., 2000), groundwater 
(Minor et al., 1994), and land use/land cover mapping (Hansen and Loveland, 2012; Roy 
and Giriraj, 2008). 

The Normalized Difference Vegetation Index (NDVI) by Rouse et al. (1973) was 
developed to assess ecological status and has become one of the most widely used 
indicators in ecological studies (Mishra et al., 2015). Another commonly used vegetation 
index is the Enhanced Vegetation Index (EVI). Alcaraz-Segura et al. (2017) highlighted 
the utility of EVI-derived Ecosystem Functional Attributes (EFAs) as predictors for 
Species Distribution Models (SDMs), offering an early and comprehensive response to 
vegetation performance under environmental pressures. Land surface temperature, 
extracted from thermal imagery captured by remote sensing, has been extensively utilized 
to examine regional thermal environments and has proven reliable in assessing the urban 
heat island effect. The combination of two or more remote sensing indices provides more 
comprehensive information than single indices, thus offering greater insights into 
ecological conditions. Tiner (2004) developed an aggregated index that integrates habitat 
properties such as disturbances and habitat extent to quantify ecosystem conditions. 
Similarly, the Forest Disturbance Index (DI) uses components of tasselled cap 
transformation of remote sensing data. Various authors have developed composite indices 
that incorporate multiple factors to quantify and monitor ecological changes using satellite 
images, overcoming the limitations of single-factor-based indices (Yu et al. 2024; Shao et 
al., 2023). 

The Pressure-State-Response (PSR) framework, proposed by the Organization 
for Economic Cooperation and Development (OECD) in 1993, serves as a tool for 
decision-making and policy formulation. This framework can integrate multiple 
parameters, whether remote sensing-based or ground-based, using weighted methods. The 
PSR framework considers three scenarios: pressures exerted by human activities, 
environmental status (climate-related), and societal responses (socio-economic). It has a 
strong potential for defining ecological status when appropriate parameters are selected, 
such as those relevant to forest, soil, wetland, agricultural, water, and urban ecosystems 
(Santibáñez et al., 2015; Zhou et al., 2013; Lee et al., 2014). However, proper selection of 
indicators is crucial to understanding human pressures, environmental responses, and 
community actions within the PSR framework. The weighting of indicators may be 
influenced by subjective experience in practice. 

In the current study, the ecological status of the Mahi Bajaj Sagar catchment area 
in Rajasthan from 2000 to 2020 was assessed using a remote sensing-based index (RSBI). 
For this assessment, three key indicators—greenness (NDVI), dryness, and heat index—
were selected and used within the PSR framework with the help of principal component 
analysis (PCA) to obtain a composite ecology status index. Although other indicators may 
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also be important in defining the ecological status of an area, this study focused on the 
three indicators that can be estimated using remote sensing. This index will be valuable for 
the rapid ecological assessment of relatively large areas, and it will assist decision-makers 
in developing frameworks for sustainable development that prioritize the conservation of 
natural ecosystems at various scales. 
 
2. Methods and Materials  
 
2.1 Study area 

Mahi Bajaj Sagar reservoir is located near the village Borekhera, about 16 km from 

Banswara city. The Mahi Bajaj Sagar catchment is located between east longitudes 72 ̊15’ 

to 78 ̊ 15′ and north latitudes 22 ̊ 0′ to 22 ̊ 40′ N, respectively, with a watershed area of 6149 
sq. km (Figure 1). The dam was built across the Mahi River, which has its source in the 
Amarkantak of the Dhar district in Madhya Pradesh. It is the biggest multipurpose project 
for the tribal area of Rajasthan as it facilitates the irrigation, hydro-power, and water supply. 

 
           Figure 1: Study area showing Mahi Bajaj Sagar Catchment 
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2.2 Data used 
Multi-spectral satellite images obtained from the Landsat satellite are used in the 

present study. These images were acquired in October for both the years 2000 (ETM+) 
and 2020 (OLI/TIRS) from USGS (https://glovis.usgs. gov/). The images were digitally 
processed, and necessary information was captured.  
 
2.3 Land use land cover (LULC) extraction 

A supervised classification method was employed to classify satellite images for 
the preparation of LULC maps for the years 2000 and 2020. The maximum likelihood 
classification algorithm, a frequently utilized technique in remote sensing image 
classification, has been endorsed by numerous researchers (e.g., Srivastava et al., 2012). 
The LULC of 500 randomly selected locations in classified maps was compared with a 
high-resolution reference dataset obtained from Google Earth to assess the accuracy of 
the LULC maps. The overall accuracies of the land use classifications for 2000 and 2020 
are expressed in terms of Kappa values, derived by comparing Google Earth-based 
observations with the LULC classified data.  

 
2.4 RSBI ecological index 
2.4.1 Indicators used in RSBI 

Remote Sensing Based Indicator (RSBI) is developed to monitor and assess the 
ecological status of an area. This index is based on the PSR framework, and parameters 
are clubbed using Principal Components Analysis (PCA). The three ecological indicators 
used in the PSR framework are greenness as pressure indicator, heat as environmental 
status and dryness as socio-economic pressure. In the present study, three important 
indicators, which can be captured from remote sensing, have been used to assess the 
ecological status; however, consideration of other important indicators like marine 
ecology, species-based (plant and animal) ecosystems, and other socio-economic factors 
etc., may also be advantageous. These three indicators are easily estimated using satellite 
data. The RSBI can be  expressed as a function of the PSR indicators:  

RSBI = f(Greenness, Dryness, Heat)           ………………………….(1) 
 
Greenness as a pressure indicator is estimated using vegetation cover and captured 

in terms of NDVI (Normalized Difference Vegetation Index). NDVI is a globally accepted 
vegetation index for monitoring vegetation growth over an area. Consequently, NDVI has 
long served as an alternative for ecosystem assessment. The NDVI is calculated using the 
following formula: 
NDVI = (NIR Band – Red Band)/(NIR Band + Red Band) ………………………..(2) 
Where NIR represents near-infrared (NIR)  bands of the Landsat image. 

 
Dryness, indicative of built-induced land-surface desiccation, is defined by the 

Index-Based Built-up Index (IBI). Human activities exert a significant influence on 
ecological status, with the conversion of existing pervious or vegetative areas into built-up 
areas being a notable negative consequence that leads to land surface dryness. 
Consequently, the IBI is chosen to capture this effect. The IBI index is calculated using 
the following formula: 
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IBI = (2SWIR Band/(SWIR Band + NIR Band) − [NIR Band /(NIR Band + Red Band) 
+ Green Band /(Green Band + SWIR Band)])/( 2SWIR Band /(SWIR Band + NIR Band) 
+ [NIR Band /(NIR Band + Red Band) + Green Band /(Green Band + SWIR Band)])                                                                                                        
                                                                                             …………………………(3) 
Where SWIR Band, NIR Band, Red Band, and Green Band are the satellite data captured 
in respective wavelengths. 

 
Heat as an environmental indicator is estimated in terms of  Land Surface 

Temperature (LST). LST is a widely accepted parameter, and its change over some time 
indicates a change in land and water interaction with the atmosphere. It can be estimated 
using remote sensing data. LST is calculated using the Single Channel (SC) algorithm 
through a Python code using thermal band satellite data. 
 
2.4.2 Integration of the indicators 

Rather than employing a conventional weighted approach, the statistical 
approach, i.e. Principal Component Analysis (PCA) is used to integrate three ecological 
indicators to estimate RSBI (Remote Sensing-based Ecological Status Index). The first 
component of PCA (PC1) was selected to represent RSBI since PC1 accounts for more 
than 78% of the total variation within the dataset. Each metric's significance to RSBI is 
determined by its loading onto PC1. PCA approach avoids the subjective optimization of 
weights. Accordingly, initial RSBI, RSBI0, is denoted by PC1: 

RSBI0 = PC1[f(NDVI, IBI, LST)]                            …………………….…....(4) 
 
The thematic map of all three indicators is prepared, and from the maps, the 

metrics of each indicator are extracted and transformed into three 3-band images to find 
the covariance matrix. Using ArcGIS software, the covariance matrix is calculated to 
estimate the first component of PCA as PC1. Due to unit difference and range of data 
variation for each ecological indicator, reclassification of values from 0 to 100 is done 
initially before applying PCA. The lower value of  RSBI0 indicates good ecological status; 
similarly, a higher value of  RSBI0 indicates poor ecological status. Ecology status can be 
assumed to be good for a higher value of RSBI and bad for a lower value of RSBI. The 
RSBI0 values are subtracted from 100 to get the RBSI index.: 

RSBI = 100 − RSBI0             ……………..(5) 
 
Further, normalization between 0 and 100 of the RSBI value was done to 

understand the result better. Depending on the RSBI value from 0 to 100, ecological status 
can be easily estimated. Finally, the RSBI values are classified into five levels, i.e.  Level 1 
(0–20) indicates the very poor status of ecology; level 2 (20–40) indicates a poor level of 
ecology; level 3 (40–60) indicates an acceptable level of ecology; level 4 having RSBI value 
from 60 to 80 indicates the good status of ecology and Level 5 having RBSI values between 
80 and 100 represents very good status of the ecology. 

  
2.4.3 Integration of the Indicators 

A simple image differencing method was used to assess and monitor the temporal 
change in ecology, considering classified RSBI maps:  
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∆RSBI = RSBI2020 – RSBI2000           ……………………………………..(6) 
The negative change represents a degradation in the ecological status, whereas the 

positive value indicates an improvement in ecological status. 
 
3. Results  

The maximum likelihood classifier algorithm and supervised classification method 
have been used to classify the multi-spectral satellite images for extraction of land use land 
cover (LULC) information for years 2000 to 2020. The study area has seven LULC classes, 
i.e. forest, water, cropland, shrubs, built-up area, barren, and rocky have been identified 
and extracted from the image classification. The LULC maps and changes in land use land 
cover from 2000 to 2020 have been shown in Figure 2 and Table 1.  

Table 1: Land use land cover in the study area during the year 2000 and 2020 

S. No. Class Year 2000 (%) Year 2020 (%) 

1 Water  5.7  3.36  

2 Forest  17.47  7.78  

3 Rocky  16.47  15.05  

4 Crop Land  51.52  61.9  

5 Shrub  8.12  9.14  

6 Built up Area  0.54  2.75  

7 Barren  0.14  0.01  

 

  
Figure 2: LULC map of Mahi Bajaj Sagar Catchment for 
the years 2000 and 2020 
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Classification accuracy was assessed using randomly selected 500 locations, for 
which the LULC class obtained from the image classification was compared with reference 
information captured from high-resolution Google Earth images. The overall accuracies 
of the LULC classifications for both years 2000 and 2020 were found to be 82% and 88%, 
respectively, with Kappa values indicating a high level of agreement. 

Further, three remote sensing metrics of greenness (vegetation, NDVI), heat 
(Land Surface Temperature, LST), and dryness (impervious area, IBI) are estimated from 
the satellite data for both the years i.e., 2000 and 2020 using equations 1, 2, and 3. Indicator 
values are further normalized, as discussed in the methodology section. The average values 
of the three ecological indicators are presented in Table 2. Further, PCA has been 
performed to integrate the three ecological indicators to obtain the RSBI, a composite 
index that indicates the ecological status of Mahi Bajaj Sagar catchment. 

From year 2000 to 2020, the average changes in normalized indicators for the 
study area are shown in Table 2. The greenness index decreased by 12%, whereas the heat 
index and dryness index increased by 54.6% and 24.32%, respectively. The average value 
of RSBI has also reduced by 12.88%, indicating the degradation of ecology over two 
decades. The normalized RSBI results are shown in Figure 3. 
 
Table 2: Mean values of normalized ecological indicators for the Mahi Sagar catchment 

S.No. Index Year 2000 Year 2020 Change 

1 Greenness 45.71 39.82 -12.88 

2 Dryness 53.65 66.7 24.32 

3 Heat 41.46 64.1 54.6 

4 RSBI 71.26 51.44 -27.81 

 
Figure 3: RSBI values for the year 2000 and 2020 
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RSBI results indicate that in the year 2000, the areas with very poor/ poor ecology 
were relatively small, approximately 77 km2 area, which has increased to 826 km2 by the 
year 2020. Further, the RSBI of 2020 is subtracted from the RSBI values of the year 2000 
to analyze the change in the ecological status of the area. Changes in ecological status of 
the area is shown in Table 3, and the potential causes of the ecological changes were 
identified. There were eight kinds of results in the ecological change status, namely, − 3, 
− 2, − 1, 0, 1, 2, 3, and 4, with respect to the relative change in RBSI values, as shown in 
Figure 4. It is observed that 43.62 % of the area remains unchanged in terms of RSBI 
value, indicating a resilient nature. Resilient nature is defined as the ability of the ecosystem 
to maintain or resist change in its ecological services under the impact of climate change, 
urbanization, and natural disasters. The possible reasons for such resilience are no changes 
in ecology because of stable vegetation, sufficient water availability, low urbanization, 
adaption to climate change and successful implementation of environmental policies. 
Meanwhile, 36.4% showed degradation due to changes in LULC over time and an increase 
in urban areas. The ecology of the degraded regions can be restored by framing and 
implementing proper policies of green infrastructure and limiting the rate of urbanization 
by policymakers to enhance sustainable developments. 

 
Table 3: Change analysis of ecological status        
from the year 2000 to 2020. 

Nature Change Change from year 
2000 to 2020 

Area (sq 
km) 

Percentage 
Area 

Degraded -3 0.50 0.008 

-2 9.16 0.14 

-1 2221.27 36.20 

Unchanged 0 2676.75 43.62 

Improved 1 411.40 6.70 

2 701.19 11.42 

3 109.93 1.79 

4 5.90 0.09 

Figure 4: Magnitude of ecological changes from year 2000 to 2020 

 
4. Discussion 

It has been observed from LULC classification that forest area decreased by 
55.4%, cropland increased by 201.18%, and built-up area increased by 409% from the year 
2000 to 2020. There are many reasons for LULC change, including urbanization, 
agricultural expansion, deforestation, infrastructure development, natural disasters, climate 
change, land use policies and regulations, and socio-economic drivers. An increase in built-
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up area as well as agricultural land has a significant impact on local climate and biodiversity 
because of a change in natural land cover, i.e., local native plant species, shrubs, or forests 
may change into agricultural land, leading to adverse effects on biodiversity. Conversion 
of pervious surfaces into impervious surfaces as a result of an increase in built-up activities 
may change the energy balance between land and atmosphere, leading to changes in 
climate like reduction in latent heat flux and increase in sensible heat flux. In terms of local 
climate change, an increase in built-up and croplands results in increased temperature, 
altered rainfall intensities, and changes in wind patterns, whereas habitat loss, changes in 
species compositions, disruption of ecosystem services, and instability of wildlife are 
observed in the case of biodiversity.   Thoughtful planning and suitable practices can help 
mitigate the adverse impacts of increased LULC changes and provide a holistic approach 
between humans and the ecosystem. 

LULC change has a significant impact on ecosystem services, as shown in Table 
4. If natural forest is converted into agricultural land, urban areas, or other LULC classes, 
the ability of an ecosystem to provide services is compromised. LULC changes can provide 
short-term benefits like food, fodder and fuel; however, they often lead to the degradation 
of essential ecosystem services. 

 
Table 4: Summary of LULC change impacts on ecosystem services and their possible mitigation 
and adaptation strategies. 

S.No. Services Change Impact Mitigation and adaptation 
strategies 

1 Provisioning 
services 

Deforestation for 
agricultural area 

It may increase food 
production but 
reduces the availability 
of clean water and 
forest products. 

1. Sustainable land 
management 
Policies promoting 
agroforestry, conservation 
tillage and integrated water 
resource management. 

2. Protected areas and 
conservations - 
Marking and maintenance of 
protected areas can conserve 
critical habitats and 
biodiversity. 

3. Restoration ecology - 
Restoring degraded 
ecological areas can help to 
recover lost ecosystem 
services, such as restoration 
projects that enhance carbon 
sequestration and water 
regulation.   

4. Urban green infrastructure - 
Integrating green spaces, 
urban forests, and 
sustainable drainage systems 
in urban planning can help 
maintain regulating services 
in cities. 

2 Regulating 
services 

Conversion of 
forest, wetlands 

Increased carbon 
emission, reduced 
water quality, higher 
risk of floods and 
droughts 

3 Cultural 
services  

Natural 
landscapes to 
other classes 

Depletion of 
opportunities for 
recreational activities 
and eroding the 
cultural significance of 
natural areas for local 
communities 

4 Supporting 
services 

Conversion of 
forest, wetlands 

Habitat loss and 
fragmentation reduce 
biodiversity, disrupt 
natural processes and 
lead to the decline of 
endangered species. 
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Due to uncontrolled LULC changes over the decades, ecology has degraded, 
which is indicated by the decreasing values of RSBI. The RSBI index shows a degradation 
in ecological status from the year 2000 to 2020 as its value has reduced by 27.81%. A 
decrease in RSBI value indicates Habitat Loss and Fragmentation, loss of ecosystem 
services, and loss of cultural and socio-economic values.  

It is observed that 43.62 % of the area remains unchanged in terms of RSBI value, 
indicating a resilient nature. Resilience nature is defined as the ability of the ecosystem to 
maintain or resist change in its ecological services under the impact of climate change, 
urbanization and disasters. The reasons behind unchanged ecology are stable vegetation, 
sufficient water availability, low urbanization, adaption to climate change and successful 
implementation of environmental policies. Meanwhile, 36.4% showed degradation due to 
changes in LULC over time and an increase in urban areas. The ecology of the degraded 
regions can be restored to a certain extent by framing and implementing proper policies 
for green infrastructure, rewarding owners for maintaining the ecosystem on their lands, 
and limiting the rate of urbanization by policymakers to enhance sustainable 
developments. 

Habitat Loss results in the degradation of biodiversity and ecology and negatively 
impacts communities by reducing access to critical resources such as food, water, and raw 
materials. LULC changes, landscape disturbances, and other anthropogenic activities 
reduce agricultural productivity, increase health risks from poor environmental quality, and 
the erosion of cultural sites that hold spiritual or historical significance. Economic activities 
dependent on natural habitats, like fishing and logging, face declines, exacerbating poverty 
and food insecurity. Ecosystem processes, such as natural water purification, soil fertility, 
and pollination, are vital for community well-being. Their loss can increase costs for 
resource management, reduce the availability of clean water and food, and disrupt 
traditional practices related to health and agriculture. This degradation impacts economic 
stability and health outcomes and diminishes conventional ecological knowledge that 
communities rely on for sustainability. The erosion of cultural and socio-economic values 
undermines community identity and social cohesion.  

Habitat loss is quantified by detecting degraded areas using vegetation cover and 
built areas, as well as urban expansion from the encroachment of natural habitat areas. The 
results indicate the impact of human activities on habitats. RSBI helps in the early detection 
of habitat conditions, allowing policymakers to prevent further habitat loss and guiding 
environmental policymakers in strategizing land use planning to minimize landscape 
disturbances. Benefits obtained from the ecosystem are termed ecosystem services. 
Changes in RSBI values indicate the changes in ecosystem services. For example, a 
decrease in vegetation cover tends to decrease carbon sequestration capacity, resulting in 
an increase in temperature corresponding to poor local climate regulation service. 
Policymakers should prioritize areas with lower values of RSBI for restoration, 
conservation, and sustainable management of ecosystems. 

The RBSI may help assess vulnerable communities through its integration with 
socio-economic indicators, i.e., income levels or population density, resulting in the 
identification of more vulnerable areas for ecological degradation. The RBSI can check the 
efficacy of existing policies or assist in planning new policies to balance environmental 
sustainability. For example, areas with low economic development but high RSBI value 
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should be targeted first for sustainable development to maintain the balance between both 
ecological and socio-economic outcomes. Economic valuation of natural resources: 
economic values of natural resources, such as forests, could be validated using RSBI values 
supporting livelihood through tourism. These RSBI findings will assist in environmental 
sustainability when planning land use policies. Climate resilience: socio-economic stability 
is identified by a change in RSBI values. For example, areas with lower RSBI values are 
more vulnerable to climate-related disasters like drought, floods, etc, impacting local 
economies and livelihoods. RSBI values directly and indirectly affect socio-economic and 
human well-being by influencing ecological status (Table 5).  

 
Table 5: Applications of RSBI Index 

S. No. Parameter Quantification  RSBI Impact 

1 Agriculture 
Productivity 
and food 
security 

Monitoring vegetation 
health 

Low Soil degradation or drought 
resulting in low crop yields  

2 Health and 
well-being 

Air quality, Heat stresses, 
disease vector control, 

Low  Higher temperatures and lower 
vegetation result in heat stress, 
poor air quality and the spread of 
diseases. 

3 Economic 
Stability 

Resource-based 
livelihoods 

Low The lower value of RSBI results in 
lower ecological status, promotes 
resource depletion and reduces the 
income and economic stability of 
people habitants depending on 
fisheries, forestry or tourism.  

Disaster risk reduction Low Identify areas prone to natural 
disasters such as floods or 
droughts.  

Tourism  Low  Lower RSBI negatively impacts 
natural beauty and bio-diversity-
dependent communities. 

 
The RBSI index can help in maintaining environmental sustainability in a 

multifaceted way. It can guide policymakers in deciding the land use policies and help 
regulate land use change. It can also help identify the characteristics of the affected 
ecosystem and determine the socio-economic context. The study is successful in 
estimating the change in the status of the ecology of the Mahi catchment over 20 years. 
Further, the study successfully demonstrated the application of remote sensing and GIS 
for the ecology assessment of larger areas. 

Over-exploitation of natural resources for food, fuel, and shelter is degrading 
ecological health. This exploitation of resources can be reduced by framing and 
implementing proper policies, i.e. limiting and preventing over-harvesting of resources, 
making reserve or protected areas, taxes and subsidies, payments for preserving 
ecosystems, sustainable forestry and agriculture, strict enforcement of laws, community-
based resource management, public awareness and educating people about ecosystems.  
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Policymakers can use the RSBI to make policies and prioritize the areas for policy 
implementation while considering the human and ecological aspects of sustainability. RSBI 
serve as an important tool in creating and guiding holistic approaches for environmental 
policymaking, which promotes greenery, protection of critical habitats and improved 
ecosystem services.  

Integration of multiple indicators such as air quality index, water quality index, 
biodiversity indicators, region-specific indicators, and socio-economic indicators using 
machine learning and AI techniques with higher resolution and temporal data will enhance 
RSBI accuracy, flexibility, and relevance at various scales from global to local for ecological 
assessment and decision making. Such issues can be studied in the future research. 
 
5. Conclusion 

 
RSBI, based on the PSR framework, is used in the present study to assess the 

ecological status of the Mahi catchment in terms of three critical ecological indicators, i.e., 
greenness, heat, and dryness and successfully quantified the changes in ecology during the 
years 2000 and 2020. The RSBI values over the Mahi catchment showed that the 
catchment experienced ecological deterioration during the study period from 2000 to 2020, 
with the mean RSBI value which decreased from 71.26 in 2000 to 51.44 in 2020. The 
development of RSBI is aimed at assessing ecological status using three indicators that are 
strongly correlated to general ecological conditions. This remote sensing data-derived 
index will be helpful for quick ecological assessment as it integrates environmental factors 
and helps decision-makers develop or plan a proper framework for sustainable 
development that considers the conservation of natural ecosystems at various scales. 
Further, refining the RSBI will assist the policymakers in urban planning, environmental 
monitoring, water resource management, flood risk management, post-disaster ecological 
assessment, drought monitoring, ecological policy development and many more at various 
scales. The study has also demonstrated the successful application of spatial technologies, 
i.e., remote sensing and GIS, in environmental studies. 
 
References 
 
Anderegg, WR., Kane, JM., & Anderegg. LD. (2013): Consequences of widespread tree mortality triggered by 

drought and temperature stress. Nature Climate Change 3(1):30_36 DOI 10.1038/nclimate1635. 
Alcaraz-Segura, D., Lomba, A., Sousa-Silva, R., Nieto-Lugilde, D., Alves, P., Georges, D., … Honrado, J. P. 

(2017): Potential of satellite-derived ecosystem functional attributes to anticipate species range 
shifts. International Journal of Applied Earth Observation and Geoinformation: ITC Journal, 57, 
86–92. DOI:10.1016/j.jag.2016.12.009 

Baldocchi, D. (2008): Breathing of the Terrestrial Biosphere: Lessons Learned from a Global Network of 
Carbon Dioxide Flux Measurement Systems. Australian Journal of Botany, 56, 1–26. 

Bastiaanssen, W. G. M., Molden, D. J., & Makin, I. W. (2000): Remote sensing for irrigated agriculture: 
examples from research and possible applications. Agricultural Water Management, 46(2), 137–155. 
DOI:10.1016/s0378-3774(00)00080-9. 

Berkes, F. (2008): Chapter 4: Traditional knowledge systems in practice. Sacred ecology, 71-96. 
Dahdouh-Guebas, F. (2002): The use of remote sensing and GIS in the sustainable management of tropical 

coastal ecosystems. Environment, Development and Sustainability, 4, 93–112. 
Gordon, I., & Ezzine-de-Blas, D. (2021): The Impact of Cultural Heritage Loss on Indigenous and Local 

Communities. Environmental Science & Policy, 114, 43-52. 



                                                          S. Singh et al.                                                                        377 

© 2024 The Authors. Journal Compilation    © 2024 European Center of Sustainable Development.  
 

Hansen, M. C., & Loveland, T. R. (2012): A review of large area monitoring of land cover change using Landsat 
data. Remote Sensing of Environment, 122, 66–74. DOI:10.1016/j.rse.2011.08.024 

Kanninen, M., Murdiyarso, D., Seymour, F., Angelsen, A., Wunder, S., & German, L. (2007): Do trees grow 
on money? The implications of deforestation research for policies to promote REDD. Kota Bogar: 
Center for International Forestry Research (CIFOR). 

Kasischke, E. S., Melack, J. M., & Dobson, C. (1997): The use of imaging radars for ecological applications - 
a review. Remote Sensing of Environment, 59(2), 141–156. 

Lambrechts, C., Wilkie, ML., & Rucevska, I., (2009): Vital forest graphics. Rome: Food and Agriculture 
Organization of the United Nations 

Lee, G., Jun, K.-S., & Chung, E.-S. (2013): ‘Integrated multi-criteria flood vulnerability approach using fuzzy 
Topsis and Delphi technique, ’’ Natural Hazards Earth Syst. Hazards Earth Syst. Sci, 13(5), 1293–
1312. 

McDonnell, M. J., & MacGregor-Fors, I. (2016): The ecological future of cities. Science (New York, 
N.Y.), 352(6288), 936–938. DOI:10.1126/science.aaf3630 

Millennium ecosystem assessment, M. E. A. (2005): Ecosystems and human well-being (Vol. 5, p. 563). 
Washington, DC: Island press. 

Minor, T. B., Carter, J. A., & Chesley, M. M. (1994): The Use of GIS and Remote Sensing in Groundwater 
Exploration for Developing Countries. Fort Belvoir, VA: Army Topographic Engineering Center. 

Mishra, N. B., & Chaudhuri, G. (2015). Spatio-temporal analysis of trends in seasonal vegetation productivity 
across Uttarakhand, Indian Himalayas, 2000–2014. Applied Geography (Sevenoaks, England), 56, 
29–41. DOI:10.1016/j.apgeog.2014.10.007 

Mu, Q., Zhao, M., Heinsch, F. A., Liu, M., Tian, H., & Running, S. W. (2007): Evaluating water stress controls 
on primary production in biogeochemical and remote sensing based models. Journal of Geophysical 
Research, 112(G1). DOI:10.1029/2006jg000179 

Patil, R. J., Sharma, S. K., & Tignath, S. (2015): Remote Sensing and GIS based soil erosion assessment from 
an agricultural watershed. Arabian Journal of Geosciences, 8(9), 6967–6984. DOI:10.1007/s12517-
014-1718-y 

Qiu, B., Chen, G., Tang, Z., Lu, D., Wang, Z., & Chen, C. (2017): Assessing the Three-North Shelter Forest 
Program in China by a novel framework for characterizing vegetation changes. ISPRS Journal of 
Photogrammetry and Remote Sensing: Official Publication of the International Society for 
Photogrammetry and Remote Sensing (ISPRS), 133, 75–88. DOI:10.1016/j.isprsjprs.2017.10.003 

Rajitha, K., Mukherjee, C. K., & Vinu Chandran, R. (2007): Applications of remote sensing and GIS for 
sustainable management of shrimp culture in India. Aquaculture Engineering, 36(1), 1–17. 
DOI:10.1016/j.aquaeng.2006.05.003 

Rao, D. P. (2000): Role of remote sensing and geographic information system in sustainable 
development. International Archives of Photogrammetry and Remote Sensing, 7, 1231–1251. 

Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973): Monitoring Vegetation Systems in the Great 
Plains with ERTS. In Proceedings of the Third ERTS Symposium, NASA SP-351 (pp. 309–317). 
Washington, DC, USA. 

Roy, P. S., & Giriraj, A. (2008): Land use and land cover analysis in the Indian context. Journal of Applied 
Sciences (Faisalabad, Pakistan), 8(8), 1346–1353. DOI:10.3923/jas.2008.1346.1353 

Santibáñez-Andrade, G., Castillo-Argüero, S., Vega-Peña, E. V., Lindig-Cisneros, R., & Zavala-Hurtado, J. A. 
(2015): Structural equation modeling as a tool to develop conservation strategies using 
environmental indicators: The case of the forests of the Magdalena river basin in Mexico 
City. Ecological Indicators, 54, 124-136. 

Saraf, A. K., & Choudhury, P. R. (1998): Integrated remote sensing and GIS for groundwater exploration and 
identification of artificial recharge sites. International Journal of Remote Sensing, 19(10), 1825–
1841. DOI:10.1080/014311698215018 

Shao, Q., Liu, S., Ning, J., Liu, G., Yang, F., Zhang, X., ... & Liu, J. (2023): Remote sensing assessment of the 
ecological benefits provided by national key ecological projects in China during 2000–2019. Journal 
of Geographical Sciences, 33(8), 1587-1613 

Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020): Applications of remote sensing in precision agriculture: A 
review. Remote Sensing, 12(19), 3136. DOI:10.3390/rs12193136 

Srivastava, P. K., Han, D., Rico-Ramirez, M. A., Bray, M., & Islam, T. (2012): Selection of classification 
techniques for land use/land cover change investigation. Advances in Space Research: The Official 



378                                                    European Journal of Sustainable Development (2024), 13, 4, 364-378 

Published  by  ECSDEV,  Via dei  Fiori,  34,  00172,  Rome,  Italy                                                     http://ecsdev.org 

Journal of the Committee on Space Research (COSPAR), 50(9), 1250–1265. 
DOI:10.1016/j.asr.2012.06.032 

Tang, X., Ma, M., Ding, Z., Xu, X., Yao, L., Huang, X., … Song, L. (2017): Remotely monitoring ecosystem 
water use efficiency of grassland and cropland in China’s arid and semi-arid regions with MODIS 
data. Remote Sensing, 9(6), 616. DOI:10.3390/rs9060616 

Tiner, R. W. (2004): Remotely-Sensed Indicators for Monitoring the General Condition of ‘Natural Habitat’ 
in Watersheds: An Application for Delaware’s Nanticoke River Watershed. Ecological Indicators, 4, 
227–243. 

Wilkinson, G. G. (1996): A review of current issues in the integration of GIS and remote sensing 
data. International Journal of Geographical Information Systems, 10(1), 85–101. 
DOI:10.1080/026937996138223 

Williams, M., Longstaff, B., Buchanan, C., Llansó, R., & Dennison, W. (2009): Development and evaluation 
of a spatially explicit index of Chesapeake Bay health. Marine Pollution Bulletin, 59(1–3), 14–25. 
DOI:10.1016/j.marpolbul.2008.11.018 

Yu, J., Li, X., Guan, X., & Shen, H. (2024): A remote sensing assessment index for urban ecological livability 
and its application. Geo-Spatial Information Science, 27(2), 289-310. 

Zhang, J., Zheng, S., Sun, Y., & Yue, H. (2023): Landscape ecological risk assessment of an ecological area in 
the Kubuqi desert based on Landsat remote sensing data. Plos one, 18(11), e0294584. 

Zhou, D., Lin, Z., Liu, L., & Zimmermann, D. (2013): Assessing secondary soil salinization risk based on the 
PSR sustainability framework. Journal of Environmental Management, 128, 642-654. 

 

 


