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Abstract  
The waste management sector accounts for 19% of greenhouse gases produced by the island of 
Mauritius, and is second to the energy sector which contributes about 77% of total emissions. 
Significant mitigating measures are being sought to reduce the impact of the waste sector. The main 
greenhouse gas produced from waste in Mauritius is methane from landfill disposal. Among the 
different alternate waste management scenarios proposed, home composting is one strategy to achieve 
carbon reductions in the sector.  However, this target can only be achieved if the composting process 
is properly controlled.  Objectively, a lumped parameter model was used to analyse the set of variation 
parameters to achieve greatest reduction in methane through optimal composting.   The composting 
matrix was modelled as a point source. Mass balance equations were coupled with heat transport 
equations and reaction kinetics equations to determine the optimal set of parameters for efficient 
composting of yard waste and kitchen waste.  The simulations demonstrated that bulking of vegetable 
waste prior to composting is required to prevent production of methane. 
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1. Introduction  
 

Composting can be defined as the natural biological degradation of organic matter 
by micro-organisms, in the presence of oxygen, to form a stable and sanitised product 
known as compost (Anepu, 2012). Carbon dioxide and water are the by-products of this 
exothermic process.  Interest in the process in the past was mainly due to the agricultural 
benefits of the compost produced (Białobrzewski et al, 2015).  Compost is an excellent 
soil conditioner. It increases the water holding capacity of the soil, thus preventing soil 
erosion and nutrient run-off.  Humus increases the soil’s content in organic matter.  It is 
also a natural source of nutrients for plants, and therefore reduces the need for fertilizers 
(Wei et al, 2017). The high temperatures attained during composting can be used to destroy 
weed seeds and harmful pathogens in plants, potentially reducing the need for herbicides 
and pesticides (Kaushal et al,2012)).     
The organic fraction of municipal solid waste ranges from about twenty percent in 
developed countries to up to seventy five percent in developing countries (OECD, 2007, 
Rastogi et a.,2019) and prediction models forecast an escalation in the production of food 
waste (Adhikari et al, 2006).  Composting, anaerobic digestion, thermal treatment and 
landfill disposal are some of the different possible options for organic waste treatment 
(Silva et al, 2007).  Life cycle assessment combined with worth benefit analysis has 
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demonstrated that composting is a better option for organic waste recycling than thermal 
treatment (Skordilis, 2009).  Composting has also been shown to reduce greenhouse gas 
emissions since only carbon dioxide gas is produced as by-product and when applied to 
soil temporarily sequestrates some carbon (Amlinger et al, 2008; Favoino and Hogg, 2008, 
Bokhoree & Kisnah, 2010).  It is also well known that composting is accompanied by 
volume reductions of up to 60% (Hwang et a., 2002; Yaghmaein et al, 2005, Onwosi et al, 
2017).  Composting is therefore considered as a sustainable organic waste management 
solution (Najm et al, 2002; Eriksson et al, 2002; Klang et al, 2006).   
Composting is the process through which micro-organisms such as bacteria, fungi, yeasts 
and actinomycetes naturally convert, in the presence of oxygen, organic matter into carbon 
dioxide, water and a stable product called compost (Tchobanoglous et al, 1993, Lopez-
Gomes et al, 2019)).  The process is exothermic, where thermal energy is another by-
product. There are numerous parameters and properties such as temperature, moisture, 
free air space, aeration rate, particle size and biodegradability influencing the composting 
process and the quality of the end-product, the compost.   
Temperature is a key parameter in the composting process and at the same time it is a 
function of the process (Epstein, 1997).  It has a direct impact on the species of micro-
organisms present in the substrate by affecting their rate of reaction and the moisture 
content. The Arrhenius equation which expresses the mathematical relationship between 
temperature and rate of reaction based on theoretical and experimental observations is 
assumed to hold for biological processes (Bari et al., 2000). An increase in temperature 
creates a positive feedback on the reaction rate, thus inducing a cumulative temperature 
rise. This generation and accumulation of heat energy also affects the moisture content of 
the compost, and thus, the rate of reaction indirectly also (Epstein, 1997, Mohee, 1998).   
The temperature can be controlled through the aeration rate.  Increasing the airflow 
through the system increases the rate of evaporation which causes a cooling effect (Guo 
et al, 2020).  
The reactions kinetics of composting are affected by moisture content through changes in 
oxygen availability, water potential and microbial growth rates (Richard et al., 2002).  
Moisture is present in the system within the substrate. Additionally, moisture is added to 
the system by decomposition of organic matter and removed through evaporation 
(Epstein, 1997).  Moisture is essential for the composting process since water is required 
to dissolve the nutrients in the organic matter to make it available to the micro-organisms.  
It also acts as a medium for gas exchange and microbial migration.  Biological activity 
almost stops at moisture levels below 20% (Haug, 1993, Robinson & Stentiford, 1993).  
However moisture contents above 70% also hinder the composting process.   This is 
because at these high levels of moisture, the pores get clogged.  Free air space is reduced 
to practically zero and diffusion of gases is severely hindered.  The optimum moisture 
content of a starting substrate mix is usually given to be between 50% and 70%.  This 
however may vary, depending on the structure of the substrate.  Materials with good 
structural strength support higher moisture levels since their porosity and therefore their 
free air space are not affected.  Substrates that tend to collapse during composting may 
however require lower moisture content since porosity will decrease and the material will 
tend to compact, thus preventing gas diffusion.  
Moisture content can be adjusted at the start of the composting process by adding a 
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bulking agent having at low moisture content to a wet substrate.  Consequently, water or 
liquid waste can used to condition dry substrates.   Increasing aeration rate is another 
method to lower moisture content during the process, by increasing evaporation.  
Composting is usually known as a drying process, implying that moisture usually decreases 
as the substrate degrades (Kulcu and Yaldiz, 2005).   If the starting moisture level is too 
high however, the inverse may occur, and leachate may even be formed (Oazana et al, 
2018). 
The compost matrix consists of solid organic particles surrounded by empty spaces.  It 
can be considered as a porous medium. Free air space is essential during composting for 
air diffusion so that oxygen is made available to the micro-organisms for aerobic 
decomposition. Poulsen and Moldrup (2006) observed that there was a direct relationship 
between log of porosity and log of air permeability.  Field work has shown that a free air 
space ratio of about 0.3 is optimum (Jeris & Regan, 1973, Schultz, 1962). Moisture and 
free air space are inversely related and since both are important to the process, a trade-off 
is required (Sundberg, 2003).   
Porosity depends on the structure and particle size of the material.   The larger the particles, 
the larger will be the pores.  If the porosity of a starting substrate is too low, it can be 
increased by mixing it with a bulking agent.  Wood chips are often used for this purpose.  
Conversely, a substrate which is too porous can be shredded and compacted to reduce its 
porosity.  Since composting is accompanied by a reduction in particle size, porosity tends 
to decrease during the process (Mohee et al., 2008).   
The principal role of aeration during composting is to supply micro-organisms with 
oxygen for their survival and to break down organic matter.  Aeration however also 
removes heat from the system, and water in the form of water vapour and can therefore 
be used as a control method for temperature and moisture (Calabi-Floody et al, 2019).  
Although the maximum total amount of oxygen required to completely oxidise the 
substrate can be estimated from its chemical composition, the rate at which the oxygen 
needs to be supplied is very difficult to determine, as it is a function of the porosity of the 
material and the rate of reaction, which in turn is a function of numerous parameters 
(Chang et al, 2019).  Haug (1993) was however able to observe that the aeration rate needed 
for temperature control or for drying usually exceeded the aeration requirements for the 
bio-chemical reactions.   
Substrate biodegradability is the fraction of the initial mass that would degrade under 
composting conditions.  It is used to determine the amount of heat energy generated 
during the process, as well as the actual oxygen demand.   The biodegradability coefficient 
is the ratio of the amount of substrate decomposed to the total amount of substrate.  This 
value is usually determined experimentally, from respirometric studies or from mass 
balance equation.  The biodegradability of a substrate depends on its chemical 
composition. Lipids, sugars and hemi-cellulose degrade quite easily (Hwang et al., 2002), 
proteins and fats being less susceptible (Nakasaki et al., 2004) and with lignin being the 
most resistant to decomposition. Studies have showed that the lignin content of a material 
is the predominant factor in determining the biodegradability.    
Proper control of these process parameters ensures that composting occurs effectively.  It 
is important to ensure that aerobic conditions are maintained throughout the process to 
prevent the production of methane. Moisture content is an essential parameter which 
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impacts on the absorption transport of oxygen.  A saturated substrate with moisture 
content greater than 70 % hinders movement of gas and limits the supply of oxygen to 
micro-organisms. On the other hand, moisture dissolves oxygen to make it available to 
microorganisms and therefore it is recommended that the moisture content of a compost 
mix be at least 20% (Haug, 1993).  The purpose of this paper is to determine the ideal mix 
of household organic waste to ensure aerobic decomposition and prevent the emission of 
methane.  
 
2. Material and Methods  
 

A lumped parameter model of reactor composting as developed by Ramasamy et 
al. (2008) was used. The model considered a first order reaction kinetics where rate 
functions, mass balance, water balance, gas balance and thermal balance equations were 
considered to predict the temporal changes in temperature, moisture content and mass 
decrease of the substrate. The variables of the models were ambient temperature, initial 
moisture content of the substrate, the air flow ratthe relative humidity of air, the 
biodegrable fraction of substrate, the initial mass of the substrate and the dimensions and 
material of the reactor.  
The first order kinetic equation in the form of equation 1 was used since its effectiveness 
and accuracy have been proven (Smith and Eilers, 1980; Haug,1993; Marugg et al., 1993, 
Keener et al., 1993; Das and Keener, 1997; Mohee et al., 1998, Hamoda et al., 1998, 
Higgins and Walker, 2001; Scholwin and Bidlingmaier, 2003, Komilis, 2006, Soobratee et 
al., 2007, Sole-Mauri et al., 2007, Ramasamy & Bokhoree, 2009).  
𝑑𝑚𝑠(𝑡)

𝑑𝑡
=  −𝑘(𝑚𝑠(𝑡) − 𝑚𝑓)       ... ( Eq. 1) 

Where, ms(t) is the mass of substrate at time, t, kg 
𝑑𝑚𝑠(𝑡)

𝑑𝑡
is the rate of substrate degradation with respect to time, kgday-1 

k is the rate function and is dependent on temperature and moisture content, day-1 
mf  is the final mass of substrate, kg. 
The rate equation was expressed as a function of temperature, moisture content and free 
air space and it was assumed that oxygen concentration is not a limiting factor. 
The temperature rate coefficient adapted from the Arrhenius equation and given by 
equations 2, 3 and 4 below were used. The values for the variables were determined from 
data obtained in literature.  

𝑤ℎ𝑒𝑛 𝑇 < 𝑇𝑚: 𝑘𝑇 = exp {−
𝐸𝑎

𝑅𝑎
(

1

𝑇+273
−

1

𝑇𝑠+273
)}    ... (Eq. 2) 

𝑤ℎ𝑒𝑛 𝑇𝑚 ≤ 𝑇 ≤ 𝑇𝐿: 𝑘𝑇 =
𝑇𝐿−𝑇

𝑇𝐿−𝑇𝑚
      ... (Eq. 3) 

𝑤ℎ𝑒𝑛 𝑇 > 𝑇𝐿: 𝑘𝑇 = 0        ... (Eq. 4) 
Where,  Ts is the preference temperature, oC 
Tm is the medium threshold temperature, oC 
T is the temperature of the composting bulk, °C 
TL is the maximum allowable temperature for microbial activities, °C 
EA is the activation energy of composting bulk, Jmol-1 
R is the universal gas constant Jmole-1K-1 
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The moisture content rate coefficient was derived by Smith and Eilers (1980) and adapted 
by Mohee et al. (1998) and is given by the equation 5.  

𝑘𝑚𝑐
= −56.97 + 57.98𝑒

(
−0.5(𝑚𝑐−0.56)

1.52
)

2

        ... (Eq. 5) 

The gas balance equation used is given in equation 6.  
𝑑𝑚𝑑𝑟𝑦𝑒𝑥ℎ𝑎𝑢𝑠𝑡

𝑑𝑡
 =  

𝑑𝑚𝑑𝑟𝑦𝑎𝑖𝑟𝑖𝑛

𝑑𝑡
+ 

𝑑𝑚𝑠

𝑑𝑡
(𝑥𝐶𝑂2

−  𝑥𝑂2
)     ... (Eq. 6) 

The masses of carbon dioxide formed and oxygen used per day are determined from the 

rate of reaction, 
𝑑𝑚𝑠

𝑑𝑡
 (

𝑘𝑔

𝑑𝑎𝑦
) and the fractional amounts of gases that are formed and 

depleted respectively per unit mass of substrate decomposed. 𝑥𝐶𝑂2
, the mass of carbon 

dioxide gas produced per mass of substrate decomposed during the reaction and 𝑥𝑂2
, the 

mass of oxygen gas absorbed per mass of substrate decomposed during the reaction were 
in turn calculated from the stoichiometric equation of the oxidation of the substrate which 
is given by the formula below (Haug, 1993), using equations 8 and 9. 

𝐶𝑎𝐻𝑏𝑂𝑐𝑁𝑑 +  
2𝑎+(𝑏−3𝑑)

2(2−𝑐)
𝑂2 → 𝑎𝐶𝑂2 +  

𝑏−3𝑑

2
𝐻2𝑂 + 𝑑𝑁𝐻3   ... (Eq. 7) 

𝑥𝐶𝑂2
=

44𝑎

𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟𝑀𝑎𝑠𝑠𝑜𝑓𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
      ... (Eq. 8) 

𝑥𝑂2
=

32{2𝑎+(𝑏−3𝑑)}

2 (2−𝑐)×𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟𝑀𝑎𝑠𝑠𝑜𝑓𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
      ... (Eq. 9) 

The flow rate was calculated as a function of the pressure difference between the inlet and 
the outlet, using equation  10.  

𝑄 =  𝐶𝑑𝐴 (
2∆𝑃

𝜌
)

1

2
        ... (Eq. 10) 

Where,  Q is the volumetric air flow rate, m3s-1 
Cd is the discharge coefficient (= 0.65 for clear orifices)  
A is the area of the opening, m2 
Δp is the pressure difference between the inlet and the outlet, Pa 
ρ is the density of air, kgm-3 
The water balance equation expressed the changes in the water content of the system and 
is given by equation 11. During the composting process, water is formed as a by-product.  

The rate of formation of water is a function of the rate of decay, 
𝑑𝑚𝑠

𝑑𝑡
 (

𝑘𝑔

𝑑𝑎𝑦
), and the 

amount of water generated per unit mass of waste decomposed, 𝑥𝐻2𝑂 .  
𝑑𝑚𝑤𝑎𝑡𝑒𝑟

𝑑𝑡
=  

𝑑𝑚𝑠

𝑑𝑡
𝑥𝐻2𝑂 +  

𝑑𝑚𝑎𝑖𝑟𝑖𝑛

𝑑𝑡
𝐻𝑎𝑖𝑟𝑖𝑛

− 
𝑑𝑚𝑒𝑥ℎ𝑎𝑢𝑠𝑡

𝑑𝑡
𝐻𝑒𝑥ℎ𝑎𝑢𝑠𝑡   ... (Eq. 11) 

Where,
𝑑𝑚𝑤𝑎𝑡𝑒𝑟

𝑑𝑡
  is the rate of change of the mass of water in the substrate matrix, kgday-1 

𝑑𝑚𝑎𝑖𝑟𝑖𝑛

𝑑𝑡
is the mass air flow rate of incoming air, kgday-1 

𝑑𝑚𝑒𝑥ℎ𝑎𝑢𝑠𝑡

𝑑𝑡
is the mass air flow rate of the exhaust gases, kgday-1 

H is the specific humidity of air, kgwater/kgdryair 
The moisture entering the system with incoming air and the moisture leaving the system 
with the vapour saturated exhaust air are derived from the respective mass flow rates and 
specific humidity. Specific humidity of air was calculated using ASAE standard 
Psychometric Data and the Goff-Gratch equation for saturated vapour pressure. 
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The energy stored in the system causes the sensible heating of the substrate matrix and is 
used to calculate the rate of change of temperature with time using equation 12. 
𝑑𝐸𝑠𝑡𝑜𝑟𝑒𝑑

𝑑𝑡
= ((𝑚𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒𝑐𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒) + (𝑚𝑤𝑎𝑡𝑒𝑟𝑐𝑤𝑎𝑡𝑒𝑟) + (𝑚air𝑐𝑎𝑖𝑟)}

𝑑𝑇

𝑑𝑡
  ... (Eq. 12) 

Where, 
𝑑𝐸𝑠𝑡𝑜𝑟𝑒𝑑

𝑑𝑡
 is the rate of change of energy stored in the system, Jday-1 and 

m is the total mass, kg 
c is the specific heat capacity, Jkg-1K-1 
The equation derived by Mears et al. (1975) was used to determine the specific heat 
capacity of the matrix, depending on its moisture content.  
The rate of energy generated as a result of microbial activity was expressed as the product 
of the rate of decomposition and the enthalpy of the substrate.  In the absence of 
experimental data, heat of combustion was taken as an approximate value for the enthalpy, 
although it is invariably higher, since not all of the available energy is released during 
decomposition.  
Most of the energy lost is assumed to be in the form of vaporisation of a percentage of 
the water formed during the process and conductive losses through the reactor walls.  
Convective losses and heat loss due to radiation are negligible since the process occurs 
within an enclosed space.    
In a lumped parameter model, the substrate is assumed to be a point source with no spatial 
variations in the model variables.  Effective stress due to loading was therefore assumed 
to be equal to zero.  Settlement was modeled as being a function of only two parameters, 
namely the mass of substrate and the bulk density of the substrate, as given by equation 
13.   
𝑑𝑉

𝑑𝑡
=

𝑑𝑚(𝑡)

𝑑𝑡
× 𝜌(𝑡)        ... (Eq. 13) 

Where, V is the volume of substrate, m3 

𝜌is the bulk density of the substrate, kgm-3 

The rate of change of mass of solid is determined from the reaction kinetics.  The water 
balance equation is used to determine the change in moisture content of the substrate. The 
change in mass and change in volume are used to compute the bulk density of the 
substrate. 
 
3. Results and Discussion 
 

In this paper, the optimum conditions for composting of kitchen waste were 
determined using the above described model.  Kitchen waste has an initial moisture 
content ranging between 80 % and 95 % (Briski et al., 2006, Chang et al., 2006).   A bulking 
agent was used to bring the moisture content within the range optimal range of 20–70 %.  
Yard waste, another organic fraction of municipal solid waste has been considered as a 
bulking agent since it has a relatively lower moisture content, ranging between 30 % and 
45 % (Manu et al, 2013, Hla & Roberts, 2015).  Simulations were run for different mixes 
assuming an average initial moisture content of 90% and 35% for kitchen waste and yard 
waste respectively.  The initial conditions of ambient temperature, total volume of waste, 
reactor volume and surface area were kept constant at 23oC, 200 kg, 1 m3 and 6m2 
respectively. The variation of moisture content and temperature during the process were 
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observed over a period of 25 days to investigate the optimal mixture which would ensure 
aerobic conditions throughout.  

 
Table 1: Initial parameters for composting of kitchen waste and garden waste 

Parameter Mix 1 Mix 2 Mix 3 Mix 4 

Ratio kitchen waste: yard waste 1:1 1:2 1:3 1:5 

Initial moisture content, % 62.5 53.3 48.8 44.2 

 
The results showed that in all four cases, the moisture content of the composting pile 
remained within the recommended range of 20-70% (Haug, 1993). The process has 
therefore been continuous and anaerobic conditions have been avoided.  In scenario 1 
which contained equal masses of kitchen and garden waste, the moisture content of the 
mix increased from day 1 to reach a maximum value of 66.22 % on day 16. The moisture 
content decreased steadily from day 17 to day 25.  This is equivalent to a net increase of 
4.5 %.  The same trend was observed during the three other simulations.  Scenarios 2, 3 
and 4 however observed sharper increases in the moisture content within the initial 15 
days of the process. Maximum values of moisture contents were 64.95% on day 12 for 
mixture 2, 62.1% on day 8 for mixture 3 and 56.7% on day 8 for mixture 4. The mixture 
of 20% kitchen waste and 80% garden waste, i.e., mix 4 underwent the greatest increase in 
overall moisture content, from an initial value of 44.2 % to a value of 50.85 % at the end 
of the 25-day period. The initial increase in moisture content can be explained from the 
high initial reaction rate due to the presence of readily digestible organic matter such as 
sugars, carbohydrates and proteins.  During this period, the rate at which water is produced 
from decomposition is greater than the rate at which it is removed from the mix by the 
process of evaporation. As temperatures decrease over the subsequent days, 
decomposition slows down.  The rate of loss of water exceeds the rate of water formation, 
leading to drying.  The rate of evaporation during that period is however not sufficient to 
remove the net mass of water produced over the 25 days such that there is a net increase 
in moisture content in the four scenarios.    
 

 
Figure 1: Variations in moisture content during the process 



104                                                      European Journal of Sustainable Development (2021), 10, 4, 97-107 

Published  by  ECSDEV,  Via dei  Fiori,  34,  00172,  Rome,  Italy                                                     http://ecsdev.org 

Table 2: Maximum values and net change in moisture content during the process 

 Mix 1 Mix 2 Mix 3 Mix 4 

Maximum moisture content reached, % 66.22 64.95 62.1 56.7 

Net change in moisture content, % 4.64 15.05 11.89 19.12 

 
Richard et al. (2002) and Xi et al (2005) however both observed overall decreases in 
moisture content during composting, confirming that composting is a drying process 
(Kulcu & Yaldiz, 2005). The difference in simulations in the present case may be due to 
differences in initial parameters used in the model, such as ambient conditions of 
temperature and humidity, aeration rates and reactor characteristics. All these parameters 
affect the rate of water loss due to evaporation and will therefore have a direct impact on 
the moisture content of the compost pile.  
The temperature profiles of all four simulations follow the trend on a sharp increase in 
temperature during the initial 3 days followed by a sharp decrease during the next 7 days.  
The temperature constantly decreases at a slower rate as from day 10.  The maximum 
temperatures observed are 67oC on day 4 for mixture 1, 62.4oC on day 4 for mixture 2, 
56oC on day 2 for mixture 3 and 54.5oC on day 4 for mixture 4.  Temperatures greater 
than 45oC are observed during 7 days, from day 2 to day 8 in scenario 1, 4 days form day 
2 to day 5 in scenario 2, 5 days from day 2 to day 6 in scenario 3 and 4 days from day 3 to 
day 6 in scenario 4. The sharp initial increase in temperature is explained by the fast 
decomposition of readily digestible nutrients at the start of the process. The process being 
exothermic and the rate of decomposition being a function of temperature, a positive 
feedback is created thereby a fast temperature rise is observed.  As the reaction increases 
however, the mass of water produced also increases producing a cooling effect. A sharp 
decrease in temperature is therefore observed as from day 4, which is equivalent to a 
decrease in the rate of decomposition.  Water having a high specific heat capacity 
experiences smaller temperature changes for the same amount of heat energy absorbed as 
compared to dry solids. Bari et al. (2000), Mohee et al. (2008), Seki & Shijuku (2012) also 
observed similar trends whereby the temperature reached a maximum value within the 
first five days to gradually decrease.  
 

 
Figure 2: Variations in temperature during the process 
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Table 3: Maximum temperatures and duration of thermophilic phase during the process 

 Mix 1 Mix 2 Mix 3 Mix 4 

Maximum temperature reached, oC 67 62.4 56 54.5 

Number of days temperature > 45 oC 7 4 5 4 

 
Corelating temperature and moisture content profiles demonstrates that greatest 
temperatures are observed in scenario 1. This indicates that decomposition was fastest and 
more efficient in scenario 1, where the initial moisture content was highest at 62.5%.  
Horisawa et al. (2000) also observed that microbial activity was highest at moisture 
contents above 60%. A direct relationship can also be observed between initial moisture 
content and highest temperatures reached. The mix with the highest initial moisture 
content which is mix 1 recorded the highest maximum temperature and the mix with the 
lowest initial moisture content, which is mix 3 recorded the lowest maximum temperature. 
This indicates that it is important to adjust the moisture content at the start of the process 
itself, as confirmed by Richard et al. (2000).   
 
4. Conclusion 
 

Composting, especially home composting is considered as a sustainable solution 
to organic waste management.  Indeed, it promotes the proximity principle and has very 
little environmental impacts. Additionally, the produced compost is a sanitised product 
which can be applied to soil as a soil conditioner or as an organic fertiliser.    Composting 
has lately also been considered as a climate mitigation solution for the waste management 
sector due to the fact that only carbon dioxide is produced as emissions.  Comparatively, 
landfill, aerobic decomposition, incineration produce greenhouse gases such as methane 
and nitrous oxides which have higher global warming potentials.  Application of compost 
to land also serves as a carbon capture strategy through sequestration.  For the composting 
process to be efficient, excess supply of oxygen is required to ensure aerobic conditions.  
In the absence of oxygen, the process to turn into anaerobic decomposition, leading to the 
production of methane.  It is therefore important to ensure that all parameters are properly 
controlled to prevent these conditions.  This paper aimed at investigating the optimal initial 
moisture content of household organic waste to ensure that transport of oxygen through 
the compost maintains aerobic conditions.  Kitchen waste has high moisture content of 
upto 95% and must therefore be mixed with a bulking agent to adjust the initial moisture 
content.  Garden waste, the other fraction of organic household waste was considered as 
a bulking agent due to its relatively lower moisture content.  Four different mixes were 
considered.  The lumped parameter model developed by Ramasamy et al. (2008) was used 
to simulate composting of the different mixes.  The results showed that moisture content 
remained within the range that will allow composting to occur throughout the process in 
all four cases. Highest temperatures were however reached during composting of mix 1.  
It can therefore be concluded form the findings of the paper that a mix of equal parts 
kitchen waste and garden waste will lead an optimised composting process.  
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