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Abstract: One of the best ways to learn cryptography is to exercise their skills on 
encrypting and decrypting algorithms through different examples on 
corresponding cryptosystems (RSA [5], Massey-Omura [8], EMO1 [6], EMO2 
[6],etc). Everyone have to try solving them by doing computations. Sometimes 
even following a wrong method one may get the right answer.  
Following the idea presented in [1], [2], [3], we have presented here a maple 
algorithm to generate strong or diagnostic[7] cryptographic examples over Finite 
Field and Elliptic Curves. 
The Maple algorithm presented, generate diagnostic exercises, in which all error 
paths lead to different answers. Using it one can easily generate exercises that are 
sound so a student who makes errors in algorithm steps computing will get the 
wrong answer. 
This conclusion can also be used even in constructing algorithms not only in 
cryptography but also in other disciplines for example generating matrix different 
types matrix equations and being sure about the number of solutions without 
solving them first, or generating economic examples  ect… 
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1. Introduction  
 

Information Comunication Technology has advanced rapidly in the recent years, 
transforming not only the lyfe style of the human society but also economical and 
financial relations. Parallell to the benefits provided by the expansion of ICT, multiple 
risks related to security of this systems have been raised. The security issue has atracted 
important investments in industrialized countries, meanwhile in less developed countries 
these investments have been more modest, although the threats are presented 
uniformally in the globalized network. Our study concerned some services of e-banking 
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and e-commerce in the Balkan Region and in the Southern Mediterranean Region. It  is 
very important that corporates that apply Information Computer Technology tools to 
have the ability to implement some software in PC, telephones, credit / debit cards, and 
in many electronic objects which can be used as surveillance equipment or objects on 
which depends the personal security (privacy), many business security or banks to the 
security of the state, etc... 
In this paper are presented some algorithms examples that generate strong or diagnostic 
cryptographic examples. Initially are presented the analytical algorithms for encryption 
and decoding protocols reviewed and cryptosystems, mistakes that can be made during 
the generation of examples and ways to avoid each of these mistakes. Once submitted 
the problem and ways are needed to build the examples that are avoiding these mistakes, 
some algorithms appear in Maple, Java or C + + for each case. Through the execution of 
these algorithms, one can generate strong examples or diagnostic examples depending on 
the program algorithm build. 
The goal of these paper is to generate not only strong examples or diagnostic examples 
for students but also to generate cryptosystems and protocols parameters such that the 
cryptosystem or the protocoll will be more secure.So the Maple and JAVA algorithms 
presented here, generates parameters for a secure cryptosystem and protocol. 
 
 
2. Massey – Omura Cryptosystem 
 
Encoding And Decoding Algorithm  [5] 
 
• We suppose that everyone has agreed upon a finite field Zp which is fixed and publicly 
known.  
• Each user of the system secretly selects a random integer u, r between 0 and p - 1 such 
that g.c.d. (u, p - 1) = 1 and (r, p-1) =1. 
• Using the Euclidean algorithm, computes its inverse v=u-1mod(p-1) and s=r-1mod(p-1)  
• If user A (Alice) wants to send a message M to user B (Bob), first she need to convert 
the alphanumeric message to numeric message M, then computes M1=Mu mod p and 
sends it to Bob 
• Without attempting to make sense of it, he raises it to his r and sends 

2 1 mod modr urM M p M p= =   back to Alice. 
• The third step is for Alice to unravel the message part of the way by rising to the v-th 

power 3 2 mod mod modv urv rM M p M p M p= = =  sending it back again to Bob. 
• He can read the message just by raising this to the s-th power  

4 3 mod mods rsM M p M p M= = =  . 
Every cryptosystsem example has to be generatet in such way that the student can not 
arrive at the solution without passing throwght all correct algorithm steps. 
To make it possible (to build strong cryptographic examples or diagnostic samples) 
during encryption should be noted that: 
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I) Encryption algorithm is performed over a finite field of characteristic p relatively 
large 
II) As private keys should be chosen: 
1. (u,p-1)=1 so the key u should be respectively prime to p-1 because of the chosen 
value key u there exist the inverse element v. 
2. u≠v  If the encrypting key  u will be equal to the key  v there is the possibility 
that the algorithm will be executed even if one will not find the inverse v=u-1mod(p-1) 
and the result can be correct. In these way we cannot be sure if there are followed all the 
right steps of the algorithm.  
3. u≠r encryption keys of communicating parties must be different because 
otherwise the decoding keys would be the same as the computation are made in the same 
area. Random selection of the same keys increases the chance of transmitting the 
plaintext rather than encrypted one. If the receiver incorrectly encrypts the message with 
his key s instead of r then he transmits the plaintext instead of the code. With this 
condition is also avoided the situation where performs actions by sender or recipient 
only.   
4. u≠s reasoning similar to the case of point 3. 
5. (r,p-1)=1  r – key must also be respectively prime to φ(p)  so one can compute 
the inverse s. 
6. r≠s reasoning is similar to the case of point 2. 
7. s≠v reasoning is similar to the case of point 3 too. 
8. p≠1 because if p=1 we transmit the plain text 
9. p≠p-1 because of the Fermat Theorem, we lose the plain text, It will be 
transmitted a code composed only by 1,1,1…   
 
III) Mistakes commonly made during calculating the keys 
0. p inverse is used instead of u inverse; 
1. p inverse is used instead of v inverse; 
2. p-1 inverse is used instead of u inverse; 
3. p-1 inverse is used instead of v inverse; 
4. Computations for finding the inverse element must be performed by module p – 
1 and not module p.  
 
2.1. Some Mistakes Commonly Made During the Algorithm Steps 

Computations  are: 
(a) Computations for  M1  , M2, M3, M4  mod (p – 1) instead of  mod p; 
(b) One can get the inverses v , s mod p instead of mod p – 1; 
(c) One can get the opposite  of  u , r instead of  the inverse v, s  respectively; 
(d) The field characteristic can be confused with the private key during the coresponding 
inverse evaluations (ie instead found v mod (p-1)  [s mod (p-1)], one can evaluate (p-1)-1 
mod u [(p-1)-1 mod r] ; 
 (e) Is used u instead of v (s instead of  r); 
The following examples, are examples that are generated from maple and Java algorithms 
that avoids the errors listed above in Massey – Omura cryptosystem. 
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Example 1:  Computations are made over a field by characteristic p=2464621 which, 
before displaying, has passed in all control steps. After that generate the privat key 
u=1361143 and r=1105913 that fulfill all the conditions set out above. One time 
generated the keys the system computes their inverse ensuring that calculations were 
made by p-1 module to avoid all errors listed above.  When the algorithm have calcuated 
the inverse keys respectively, it compare them to avoid all the possible errors listed. If 
any error is presentet the algorithm indicates the type of the error and the way how to 
avoid it. So we obtain v=748867 and s=2165417. After that it begins to calculate the 
steps of encrypting and decrypting.  
One firstly convert the plaintext into numeric plaintext so alfanumeric plaintext:  
[DA,TA,_S,EC,UR,IT,Y_] 
We obtain the numerical plaintext :  
M=[3027,4627,7845,3129,4744,3546,5178] 
0. At the firs step of the algorithm is calculated  
M1=Mumod p = [1447684, 2092759, 544105, 1184396, 2127421, 664622, 938321] 

1. Then is calculated  2 1 mod modr urM M p M p= =   
M2= [1672507, 1440192, 1486122, 1425848, 1664796, 2087290, 2261580] 
2. The third step is for Alice to unravel the message part of the way by raising to 

the v-th power 3 2 mod mod modv urv rM M p M p M p= = =  
M3= [1638815, 2056064, 1100039, 2159749, 1495619, 2014962, 2261580] 

3. At the end the algorithm computes 4 3 mod mods rsM M p M p M= = =  
M4 = [3027, 4627, 7845, 3129, 4744, 3546, 5178] 
Converting M4 back again in text message we obtain [DA,TA,_S,EC,UR,IT,Y_] 
NOTE: We have divided the message in block of two letters for the parameters used in 
this example. If one need to encrypt three or more letters at the same time he may just 
increase the parameter p.)   
 
Example 2:  At the same way we created the example 1 we have: 
The algorithm generates: p = 1617943, u = 222307, r  = 487655 
Computes the respectively inverse v = 514501, s = 1284941 
Convert the message from text into numeric:  
[PU,BL,IC,_K,EY,_S,YS,TE,M_] = [4247, 2838, 3529, 7837, 3151, 7845, 5145, 4631, 3978] 
1) M1 = [995317, 1604512, 1054199, 1381626, 73343, 244070, 1554382, 456257, 1310889] 
2) M2 = [662247, 262222, 705307, 1020310, 142724, 225411, 1386640, 75397, 16148] 
3) M3 = [1127249, 977334, 80554, 133410, 1146582, 778, 949612, 192630, 481083] 
4) M4 = [4247, 2838, 3529, 7837, 3151, 7845, 5145, 4631, 3978] 
    M4  = [PU, BL, IC, _K, EY, _S, YS, TE, M_] 
  
Both of them are strong examples because to generate diagnostic examples, every two 
error algorithms have to be different from each other. 
First of all, notice that it is absolutely necessary to use a good signature scheme along 
with the Massey-Omura cryptosystem. Otherwise, any eavedroper E (Evi)  who is not 
supposed to know the message M could pretend to be Bob at the first step of the 
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cryptosystem algorithm. Not knowing that an intruder was using his own r’, she would 
proceed to raise to the v and make it possible for Eve to read the message.  
This is one of the reasons for requiring that communicating through chipertext  
throwght this kriptosistem become  in real time. So both parties that participate have to 
be online during communication. Without this assumption, the scheme is not secure. 
An other way to secure the comunication is that, the message 

2 1 mod modr urM M p M p= =  from Bob to Alice must be accompanied by some 
authentification, i.e., some message in some signature scheme which only Bob could 
have sent. 
To avoid interference of eavedroper Evi at the first step of communication between 
Alice and Bob, could also use an  enhancement of  Massey – Omura cryptosystem like  
EMO1 or EMO2. Theese one rather than an enhancement can be seen as a 
simultaneous action of EMO1 and RSA cryptosystem which may be presented in 
another paper. Basically there is a selection of a not prime public key for which is 
difficult to factorize in two prime numbers. And then are followed the Massey – Omura 
cryptosystem steps. 
 
3. EMO-2 Cryptosystem 
 
The EMO-2 cryptosystem is an enhancement of the EMO-1 cryptosystem described 
above. The enhancement is achieved by adding a second layer of  encryption to each 
transmission, making cryptanalysis more difficult for those  who would intercept the 
message without authorization. Furthermore, the system employs a digital signature 
which enables the recipient of a message to verify the identity of the sender, providing 
still another dimension of security.  
The result is a partially private key, partially public key cryptosystem. More specifically, 
the EMO-2 cryptosystem is a combination of an EMO-1 private key system and an RSA 
public key system [3,5,6]. The details of the system construction are described below. 
Establishing the Communication System. In order to establish an EMO-2 cryptosystem 
for a network of correspondents, the key center first performs the following functions.  
For generating strong examples or diagnostically examples and exercises, we have created 
a maple algorithm that avoids generating the wrong keys or parameters for wich the 
cryptosystem  is at risc from possible eavesdropper and also avoid coming at the wright 
answer following the wrong method for some mistakes that students usually do. In 
princip the algorithm avoid the steps described below. should be noted that remains  all 
the cases reviewed in the algorithm of EMO1 cryptosystem  adding  the below 
conditions too. 
 
A. Encrypting and Decrypting algorithm steps have to be evaluated on module n=pq. 
Where p and q are prime factors. 
B. Private keys have to be chosen : 
1. ( , ( )) 1u nϕ =  
2. u≠v   
3. u≠r   
4. u≠s  
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5. ( , ( )) 1r nϕ =    
6. r≠s  
7. s≠v 
 
For the same reason as in M-O 
8. 1 1mod ( ) mod ( 1)v u n u nϕ− −= ≠ −  

9. 1 1mod ( ) mod ( 1)s r n r nϕ− −= ≠ −  
It is worth mentioning for EMO2 (8,9) is that one have to be careful that the value of v 
and s in module φ(n) should d not be the same as the value calculated by module (n-1) so 
cannot control when calculated φ(n)=φ(p)φ(q) but it is calculated at the same way as 
when n is a prime number violatin the cryptographic algorithm conditions. 
10. 1 1mod ( ) modv u n u nϕ− −= ≠  

11. 1 1mod ( ) mods r n r nϕ− −= ≠  
Should also avoid case (10,11) when the computations to find the inverse of elements 
can be performed by the module n in stead of the module φ(n). 
The following is an algorithm presented in Maple which avoids these errors in Massey – 
Omura enhancement cryptosystem (EMO1). This is an algorithm to build strong or 
diagnostic cryptographic examples too. Because some conditions are executed in the 
same step of the algorithm that does not tell us exactly which of the error message errors 
are avoided. If we just separate the “if conditions” adding them the corresponding error 
message than we can generate diagnostic examples that tells us even what type of error 
has occurred. 
     C. The public keys  e, t, and private keys  d,z have to be chosen in such way that: 
 1.(e,φ(n))=1 The private key e have to be respectively prime to φ(n) because of the 
chosen value key u exists the inverse element v. 
2. d≠e  If the public key would be the same as the private key d then there is the 
possibility that even without foundin the inverse element d, the cryptosystem algorithm 
executed and the output is correct. So if you can not control is implemented correctly or 
not the algorithm. In this case we do not only generate diagnostic or strong 
examples but alse avoid choosing such public keys to generate a weak 
cryptosystem. 
3. e≠t  public keys of communicating parties must be different because otherwise 
the decoding keys would be the same as the actions carried out over the same field. 
Random selection of the same keys increases the chance of transmitting plaintext instead 
of RSA encrypted. If the sender encrypts the message by mistake with hes private key z  
instead of the public key e then he transmits a text where the second encryption key can 
be "deactivated" instantly since the second key t which is the inverse of z is  public in the 
system. This will turn EMO2 cryptosystem  into EMO1 cryptosystem. These is an 
other circumstance where we do not only generate diagnostic or strong examples 
but alse avoid choosing such public keys to generate a weak cryptosystem. 
4. d≠u otherwise e would be  equal to v which directly affects on breaking EMO2 
cryptosystem. 



                                                   D. Hyka  and A. Benusi                                              79 

© 2014 The Authors. Journal Compilation    © 2014 European Center of Sustainable Development.  
 

5.d≠v for the same reason as  4 because u and v are the inverse elements of each- other  
as long as the other key will then automatically recognized the inverse v well known that 
he is breaking the EMO2 and turning it in RSA . 
6.d≠e because actions can be computed without the private key d. 
The following is an algorithm presented in Maple which avoids these errors in Massey – 
Omura enhancement cryptosystem (EMO1). This is an algorithm to build strong or 
diagnostic cryptographic examplestoo. Because some conditions are executed in the 
same step of the algorithm that does not tell us exactly which of the error message errors 
are avoided. If we just separate the “if conditions” adding them the corresponding error 
message than we can generate diagnostic examples that tells us even what type of error 
has occurred. 
> restart; 
`crypt/alphabet` := `abcdefghijklmnopqrstuvwxyz` 
||`ABCDEFGHIJKLMNOPQRSTUVWXYZ` 
||```1234567890-=~!@#$£%^&*()_+` 
||` ,./<>?;':"[]{}|    `: 
> ne_numra := proc(st, string)  
local ll, nn, ss, ii;   
ll := length(st); 
if ll = 0 then RETURN(0) fi;  
nn := 1; 
for ii to ll do  
ss := SearchText(substring(st, ii .. ii),`crypt/alphabet`); 
nn := 100*nn + ss  
od; 
nn - 10^(2*ll)  
end: 
> ne_germa := proc(nn, integer)  
local ss, mm, ll, pp, ii, ans; mm := nn; 
ll := floor(1/2*trunc(evalf(log10(mm))))+1; 
ans := ``; for ii to ll do mm := mm/100; 
pp := 100*frac(mm); 
ss := substring(`crypt/alphabet`, pp..pp); 
ans := cat(ss, ans); mm := trunc(mm) 
od; ans end: 
> with(numtheory): with(RandomTools):with(linalg): 
> TekstiHapur:=Array([_PU,BLI,C_K,EY_]); 

 
> Mesazhi:=map(ne_numra,TekstiHapur); 

 
> m0:=ArrayNumElems(TekstiHapur); 

 
> rg:=2^15:phi(rg); 

 
> p:=Generate(posint(range=rg)): if (type(p,prime))  then  p  else Change the private key 
end if;  

TekstiHapur := _PU, BLI, C_K, EY_[ ]

Mesazhi := 784247, 283835, 297837, 315178[ ]

m0 := 4

16384
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> q:=Generate(posint(range=rg)): if (type(q,prime))  then  q  else Change the private key 
end if; 

 
> n:=p*q; #celesi privat 

 
> n1:=phi(n); 

 
> u:=Generate(posint(range=n1));if (gcd(u,n1)=1) then v:=modp((1/u),n1) else 
u1:=change the key_u end if;   

 

 
> e:=Generate(posint(range=n1));if (gcd(e,n1)=1) then d:=modp((1/e),n1) else 
e1:=change the key_e end if;   

 

 
> if (gcd(u,n1)<>1 or gcd(u,n)<>1 or gcd(u,n-1)<>1 or v=modp((1/u),n-1) or 
v=modp((1/u),n) or u=v) then u1 end if; 
> if(gcd(e,n1)<>1 or gcd(e,n)<>1 or gcd(e,n-1)<>1 or d=modp((1/e),n-1) or 
d=modp((1/e),n) or e=d) then e1 end if; 
> r:=Generate(posint(range=n1)); if (gcd(r,n1)=1) then s:=modp((1/r),n1) else r1:=change 
the key_r end if; 

 

 
> if (gcd(u,n1)<>1 or gcd(u,n)<>1 or gcd(u,n-1)<>1 or v=modp((1/u),n-1) or 
v=modp((1/u),n) or u=v or gcd(e,n1)<>1 or gcd(e,n)<>1 or gcd(e,n-1)<>1 or 
d=modp((1/e),n-1) or d=modp((1/e),n) or e=d) then u1 end if; 
> if (r=u or r=v) then r1 end if; 
> if (gcd(r,n1)=1) then s:=modp((1/r),n1)  else r1 end if; 

 
> if (gcd(r,n1)<>1 or gcd(r,n)<>1 or gcd(r,n-1)<>1  or s=modp((1/r),n) or 
s=modp((1/r),n-1)) then r1 end if; 
> if (s=u or s=v or s=r) then r1 end if; 
> if (v=(1/u) mod p) then u1 end if; 
> for i from 1 to m0 do 
C1[i]:=Mesazhi[i]&^u mod n 
end do: 
> for i from 1 to m0 do  
if (C1[i]= C1[i]&^u mod (n1))then u1 end if 
end do; 
> M1:=array([C1[1],C1[2],C1[3],C1[4]]); 

32611

14563

n := 474913993

n1 := 474866820

u := 188902883

v := 240331847

e := 158087113

d := 351566977

r := 255394819

s := 4498759

s := 4498759
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> for i from 1 to m0 do 
C2[i]:=C1[i]&^r mod n  
end do: 
> for i from 1 to m0 do  
if (C2[i]=C2[i]&^u mod n1)then u1 end if 
end do; 
> M2:=array([C2[1],C2[2],C2[3],C2[4]]); 

 
> for i from 1 to m0 do 
C3[i]:=C2[i]&^v mod n 
end do: 
> for i from 1 to m0 do  
if (C3[i]= C3[i]&^u mod (n1))then u1 end if 
end do; 
> M3:=array([C3[1],C3[2],C3[3],C3[4]]); 

 
> for i from 1 to m0 do 
C4[i]:=C3[i]&^s mod n 
end do: 
> for i from 1 to m0 do  
if (C4[i]= C4[i]&^u mod (n1))then u1 end if 
end do; 
> M4:=array([C4[1],C4[2],C4[3],C4[4]]); 

 
> M4_:=map(ne_germa,M4); 

 
4. M-O IN ELLIPTIC CURVE CRYPTOGRAHY 
 
• We suppose that everyone has agreed upon a finite field Zp which is fixed and publicly 
known. 
• Each user of the system secretly selects a random integer u, r between 0 and p - 1 such 
that g.c.d. (u, p - 1) = 1 and (r, p-1) =1. 
• Using the Euclidean algorithm, computes its inverse v=u-1mod(p-1) and s=r-1mod(p-
1)  
• If user A (Alice) wants to send a message M to user B (Bob), first she need to convert 
the alphanumeric message to an elliptic curve point M, then computes M1=uM mod p 
and sends it to Bob 
• Without attempting to make sense of it, he multiplyes the point M1  to his key r and 
sends the message M2 to Alice. 
• The third step is for Alice to unravel the message part of the way by multiplying with 
his other key v.  
•He can read the message just by multiplying this by the key  s back to Alice. 
 

M1 := 302312480, 215628639, 266550473, 235441710[ ]

M2 := 379741741, 177444087, 4533581, 143006112[ ]

M3 := 37322677, 85188548, 1715573, 144852328[ ]

M4 := 784247, 283835, 297837, 315178[ ]

M4_ := _PU, BLI, C_K, EY_[ ]
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To make it possible (to build strong cryptographic examples or diagnostic samples) 
during encryption should be noted that: 
I) Encryption algorithm is performed over a finite field of characteristic p relatively  
II) As private keys should be chosen: 
1. (u,p-1)=1 so the key u should be respectively prime to p-1 because of the chosen value 
key u exists the inverse element v. 
2. u≠v If the encrypting key u will be equal to the key v there is the possibility that the 
algorithm will be executed even if one will not find the inverse v=u-1mod(p-1) and the 
result can be correct. In these way we cannot be sure if there are followed all the right 
steps of the algorithm.  
3. u≠r encryption keys of communicating parties must be different because otherwise the 
decoding keys would be the same as the computation are made in the same area. 
Random selection of the same keys increases the chance of transmitting the plaintext 
rather than encrypted one. If the receiver incorrectly encrypts the message with his key s 
instead of r then he transmits the plaintext instead of the code. With this condition is 
also avoided thesituation where performs actions by seder or recipient only.  
4. u≠s reasoning similar to the case of point 3. 
5. (r,p-1)=1 r – key must also be respectively prime to so one can compute the inverse s. 
6. r≠s reasoning is similar to the case of point 2. 
7. s≠v reasoning is similar to the case of point 3 too. 
8.Computations for finding the inverse element must be performed by module p – 1  
and not module p.  
 
2.2 Some of the mistakes commonly made during the algorithm steps computations are: 
(a) Computations for M1; 
(b) One can get the inverses v, s mod p instead of mod p – 1; 
(c) One can get the opposite of u; 
(d) The field characteristic can be confused with the private key during the 
corresponding inverse evaluations (i.e. instead found v mod (p-1) [s mod (p-1)], one can 
evaluate (p-1)-1 [(p-1)-1 mod r] ; 
(e) Is used u instead of v (s instead of r); 
III Other mistakes one can make are: 
 
1. Computing Mi to power u,r,v,s respectively as a commune plain text in Massey 
Omura cryptosystem not as an elliptic curve.  
2. M1,M2, M3, M4 mod (p – 1) instead of mod p; 
 
 
The following is an algorithm presented in Maple which avoids these errors in Massey – 
Omura cryptosystem. This is an algorithm to build strong or diagnostic cryptographic 
examples. Because some conditions are executed in the same step of the algorithm that 
does not tell us exactly which of the error message errors are avoided. If we just separate 
the “if conditions” adding them the corresponding error message than we can generate 
diagnostic examples that tells us even what type of error has occurred. 
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a:=0:b:=1:c:=2: d:=3: e:=4: f:=5: g:=6: h:=7: i:=8: j:=9: k:=10: l:=11: m:=12: n:=13: o:=14: p:=15: 
q:=16: r:=17: s:=18: t:=19: u:=20: v:=21: w:=22: x:=23: y:=24: z:=25: 
 with(numtheory): with(RandomTools):with(linalg): 
rg := 2^6; 
p := Generate(posint(range = rg)); if `and`(type(p, prime), evalb(`mod`(p, 4) = 3) = true) then p else 
Change the private key end if; 
p := 31; 
TekstiHapur := Array([s, o, t]); 
x1 := TekstiHapur[1]*26^2+26*TekstiHapur[2]+TekstiHapur[3]; 
f := x^3+2*x-1; 
`mod`((`mod`(x1^3+2*x1-1, p))^((p-1)*(1/2)), p);                               1 
u := Generate(posint(range = p-1)); u1 := change the key_u; u := 17;                               17 
if gcd(u, p-1) = 1 then v := modp(1/u, p-1) else u1 end if;                               23 
if `or`(`or`(`or`(gcd(u, p-1) <> 1, gcd(u, p) <> 1), v = modp(1/u, n-1)), u = v) then u1 end if; 
r := Generate(posint(range = p-1)); r1 := change the key_r; r := 7;                               7 
if `or`(r = u, r = v) then r1 end if; 
if gcd(r, p-1) = 1 then s := modp(1/r, p-1) else r1 end if;                               13 
if `or`(`or`(gcd(r, p-1) <> 1, gcd(r, p) <> 1), s = modp(1/r, p)) then r1 end if; 
if `or`(`or`(s = u, s = v), s = r) then r1 end if; 
if v = `mod`(1/u, p) then u1 end if; 
convert(u, binary);                             10001 
convert(v, binary);                             10111 
convert(r, binary);                              111 
convert(s, binary);                              1101 
P0 := array([`mod`(x1, p), `mod`((x1^3+2*x1-1)^((p+1)*(1/4)), p)]); 
P00 := array([`mod`(x1, p), `mod`(-(x1^3+2*x1-1)^((p+1)*(1/4)), p)]); 
a0 := 1; k1 := `mod`((3*P0[1]^2+a0)*(2*P0[2])^(-1), p); k2 := `mod`((3*P0[1]^2+a0)*(2*P00[2])^(-
1), p); 
x3 := `mod`(k1^2-2*P0[1], p); y3 := `mod`(-P0[2]+k1*(P0[1]-x3), p); y4 := `mod`(-
P00[2]+k2*(P0[1]-x3), p); 
P0 := Array([x3, y3]); P00 := Array([x3, y4]); 
a0 := 1; k1 := `mod`((3*P0[1]^2+a0)*(2*P0[2])^(-1), p); k2 := `mod`((3*P0[1]^2+a0)*(2*P00[2])^(-
1), p); 
x3 := `mod`(k1^2-2*P0[1], p); y3 := `mod`(-P0[2]+k1*(P0[1]-x3), p); y4 := `mod`(-
P00[2]+k2*(P0[1]-x3), p); 
P0 := Array([x3, y3]); P00 := Array([x3, y4]); 
a0 := 1; k1 := `mod`((3*P0[1]^2+a0)*(2*P0[2])^(-1), p); k2 := `mod`((3*P0[1]^2+a0)*(2*P00[2])^(-
1), p); 
x3 := `mod`(k1^2-2*P0[1], p); y3 := `mod`(-P0[2]+k1*(P0[1]-x3), p); y4 := `mod`(-
P00[2]+k2*(P0[1]-x3), p); 
P0 := Array([x3, y3]); P00 := Array([x3, y4]); 
a0 := 1; k1 := `mod`((3*P0[1]^2+a0)*(2*P0[2])^(-1), p); k2 := `mod`((3*P0[1]^2+a0)*(2*P00[2])^(-
1), p); 
x3 := `mod`(k1^2-2*P0[1], p); y3 := `mod`(-P0[2]+k1*(P0[1]-x3), p); y4 := `mod`(-
P00[2]+k2*(P0[1]-x3), p); 
P01 := Array([x3, y3]); P001 := Array([x3, y4]); 
a1 := `mod`((P01[2]-P0[2])/(P01[1]-P0[1]), p); a11 := `mod`((P001[2]-P0[2])/(P01[1]-P0[1]), p); 
x4 := `mod`(a1^2-P01[1]+P0[1], p); y5 := `mod`(-P01[2]+a1(P0[1]-x4), p); y6 := `mod`(-
P001[2]+a11(P0[1]-x4), p); 
P1 := Array([x4, y5]); P11 := Array([x4, y6]); 
                    Array(%id = 4494486850) 
                    Array(%id = 4494486914) 
k1 := `mod`((3*P1[1]^2+a0)*(2*P1[2])^(-1), p); k2 := `mod`((3*P1[1]^2+a0)*(2*P11[2])^(-1), p); 
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x3 := `mod`(k1^2-2*P1[1], p); y3 := `mod`(-P11[2]+k2*(P1[1]-x3), p); y4 := `mod`(-
P11[2]+k2*(P1[1]-x3), p); 
P10 := Array([x3, y3]); P110 := Array([x3, y4]); 
k1 := `mod`((3*P1[1]^2+a0)*(2*P1[2])^(-1), p); k2 := `mod`((3*P1[1]^2+a0)*(2*P11[2])^(-1), p); 
x3 := `mod`(k1^2-2*P1[1], p); y3 := `mod`(-P11[2]+k2*(P1[1]-x3), p); y4 := `mod`(-
P11[2]+k2*(P1[1]-x3), p); 
P10 := Array([x3, y3]); P110 := Array([x3, y4]); 
a1 := `mod`((P10[2]-P1[2])/(P10[1]-P1[1]), p); a11 := `mod`((P110[2]-P11[2])/(P10[1]-P1[1]), p); 
x4 := `mod`(a1^2-P10[1]+P1[1], p); y5 := `mod`(-P10[2]+a1(P1[1]-x4), p); y6 := `mod`(-
P110[2]+a11(P1[1]-x4), p); 
P1 := Array([x4, y5]); P11 := Array([x4, y6]); 
k1 := `mod`((3*P1[1]^2+a0)*(2*P1[2])^(-1), p); k2 := `mod`((3*P1[1]^2+a0)*(2*P11[2])^(-1), p); 
x3 := `mod`(k1^2-2*P1[1], p); y3 := `mod`(-P11[2]+k2*(P1[1]-x3), p); y4 := `mod`(-
P11[2]+k2*(P1[1]-x3), p); 
P10 := Array([x3, y3]); P110 := Array([x3, y4]); 
a1 := `mod`((P10[2]-P1[2])/(P10[1]-P1[1]), p); a11 := `mod`((P110[2]-P11[2])/(P10[1]-P1[1]), p); 
x4 := `mod`(a1^2-P10[1]+P1[1], p); y5 := `mod`(-P10[2]+a1(P1[1]-x4), p); y6 := `mod`(-
P110[2]+a11(P1[1]-x4), p); 
P1 := Array([x4, y5]); P11 := Array([x4, y6]); 
k1 := `mod`((3*P1[1]^2+a0)*(2*P1[2])^(-1), p); k2 := `mod`((3*P1[1]^2+a0)*(2*P11[2])^(-1), p); 
x3 := `mod`(k1^2-2*P1[1], p); y3 := `mod`(-P11[2]+k2*(P1[1]-x3), p); y4 := `mod`(-
P11[2]+k2*(P1[1]-x3), p); 
P10 := Array([x3, y3]); P110 := Array([x3, y4]); 
a1 := `mod`((P10[2]-P1[2])/(P10[1]-P1[1]), p); a11 := `mod`((P110[2]-P11[2])/(P10[1]-P1[1]), p); 
x4 := `mod`(a1^2-P10[1]+P1[1], p); y5 := `mod`(-P10[2]+a1(P1[1]-x4), p); y6 := `mod`(-
P110[2]+a11(P1[1]-x4), p); 
P2 := Array([x4, y5]); P22 := Array([x4, y6]); 
                    Array(%id = 4494479554) 
                    Array(%id = 4494479618) 
k1 := `mod`((3*P2[1]^2+a0)*(2*P2[2])^(-1), p); k2 := `mod`((3*P2[1]^2+a0)*(2*P22[2])^(-1), p); 
x3 := `mod`(k1^2-2*P2[1], p); y3 := `mod`(-P22[2]+k2*(P2[1]-x3), p); y4 := `mod`(-
P22[2]+k2*(P2[1]-x3), p); 
P20 := Array([x3, y3]); P220 := Array([x3, y4]); 
a1 := `mod`((P20[2]-P2[2])/(P20[1]-P2[1]), p); a11 := `mod`((P220[2]-P22[2])/(P20[1]-P2[1]), p); 
x4 := `mod`(a1^2-P20[1]+P2[1], p); y5 := `mod`(-P20[2]+a1(P2[1]-x4), p); y6 := `mod`(-
P220[2]+a11(P2[1]-x4), p); 
P2 := Array([x4, y5]); P22 := Array([x4, y6]); 
k1 := `mod`((3*P2[1]^2+a0)*(2*P2[2])^(-1), p); k2 := `mod`((3*P2[1]^2+a0)*(2*P22[2])^(-1), p); 
x3 := `mod`(k1^2-2*P2[1], p); y3 := `mod`(-P22[2]+k2*(P2[1]-x3), p); y4 := `mod`(-
P22[2]+k2*(P2[1]-x3), p); 
P20 := Array([x3, y3]); P220 := Array([x3, y4]); 
a1 := `mod`((P20[2]-P2[2])/(P20[1]-P2[1]), p); a11 := `mod`((P220[2]-P22[2])/(P20[1]-P2[1]), p); 
x4 := `mod`(a1^2-P20[1]+P2[1], p); y5 := `mod`(-P20[2]+a1(P2[1]-x4), p); y6 := `mod`(-
P220[2]+a11(P2[1]-x4), p); 
P3 := Array([x4, y5]); P33 := Array([x4, y6]); 
                    Array(%id = 4494480066) 
                    Array(%id = 4494480130) 
k1 := `mod`((3*P3[1]^2+a0)*(2*P3[2])^(-1), p); k2 := `mod`((3*P3[1]^2+a0)*(2*P33[2])^(-1), p); 
x3 := `mod`(k1^2-2*P3[1], p); y3 := `mod`(-P33[2]+k2*(P3[1]-x3), p); y4 := `mod`(-
P33[2]+k2*(P3[1]-x3), p); 
P30 := Array([x3, y3]); P330 := Array([x3, y4]); 
a1 := `mod`((P30[2]-P3[2])/(P20[1]-P2[1]), p); a11 := `mod`((P330[2]-P33[2])/(P30[1]-P3[1]), p); 
x4 := `mod`(a1^2-P30[1]+P3[1], p); y5 := `mod`(-P30[2]+a1(P3[1]-x4), p); y6 := `mod`(-
P330[2]+a11(P3[1]-x4), p); 
P3 := Array([x4, y5]); P33 := Array([x4, y6]); 
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k1 := `mod`((3*P3[1]^2+a0)*(2*P3[2])^(-1), p); k2 := `mod`((3*P3[1]^2+a0)*(2*P33[2])^(-1), p); 
x3 := `mod`(k1^2-2*P3[1], p); y3 := `mod`(-P33[2]+k2*(P3[1]-x3), p); y4 := `mod`(-
P33[2]+k2*(P3[1]-x3), p); 
P30 := Array([x3, y3]); P330 := Array([x3, y4]); 
k1 := `mod`((3*P3[1]^2+a0)*(2*P3[2])^(-1), p); k2 := `mod`((3*P3[1]^2+a0)*(2*P33[2])^(-1), p); 
x3 := `mod`(k1^2-2*P3[1], p); y3 := `mod`(-P33[2]+k2*(P3[1]-x3), p); y4 := `mod`(-
P33[2]+k2*(P3[1]-x3), p); 
P30 := Array([x3, y3]); P330 := Array([x3, y4]); 
a1 := `mod`((P30[2]-P3[2])/(P20[1]-P2[1]), p); a11 := `mod`((P330[2]-P33[2])/(P30[1]-P3[1]), p); 
x4 := `mod`(a1^2-P30[1]+P3[1], p); y5 := `mod`(-P30[2]+a1(P3[1]-x4), p); y6 := `mod`(-
P330[2]+a11(P3[1]-x4), p); 
P4 := Array([x4, y5]); P44 := Array([x4, y6]); 
                    Array(%id = 4494471298) 
                    Array(%id = 4494471362) 
y8 = `mod`(P4[1], 26);                            y8 = 15 
y9 := `mod`(P4[1]-y8, 26);                           15 + 25 y8 
y10 := `mod`(`mod`((P4[1]-y8)*26^(-1), p)-y9, 26);                               13 
 
5. RSA 
5.1. Public Key Generation 
Generate two prime intigers p and q. Compute ߮(݊) = ) − ݍ)(1 − 1).  
Choose an integer e, 1 < e < ߮, such that gcd(e, ߮) = 1.  
Encoding Algorithm[5] 
Given: modulus n = pq, public exponent ݁ ∈ ℤఝ()∗ ,and message ܯ ∈ ℤ. 
Find: cyphertext C = M e mod n. 
Method: find C = M e mod n, preferably by fast modular exponentiation. 
Decoding Algorithm[5] 
Given: modulus n = pq, public exponent ݁ ∈ ℤఝ()∗ , and ciphertext C = M e mod n. 
Find: M = Ce mod n, where d = e-1 mod φ(n). 
Method: factorise n, to find p and q; calculate φ(n) = (p - 1)(q - 1); find d = e-1 mod φ(n) 
using the Extended Euklidian Algorithm; and find M = Cd mod n, preferably by fast 
modular exponentiation. 
 
Errors that the Maple algoritme have to nutralize:  
1. Compute ߮(݊) = ݊ − 1 instead of ߮(݊) = ) − ݍ)(1 − 1) 
2. Chose the integer e, 1 < e < n, such that gcd(e,n) = 1.[4] 
3. use φ(n) instead of n as the modulus for Message or Code exponentiation; 
4. use n - 1 instead of n as the modulus for Message or Code exponentiation; 
5. When representing a message as digits sometimes is taken A-Z=1-26 and other times A-
Z=0-25 on representing the same message. 
6. use n - 1 instead of φ(n) as the modulus when finding e-1; 
7. use n instead of φ(n) as the modulus when finding e-1; 
8. use e instead of d;[4] 
9. ݁ ≠ ݀ one can compute the code C as C=M e mod n or can compute the message as 
M=C e mod n 
10. negate the inverse e-1; 
11.  swap the modulus and d when computing d-1(so, with modulus φ(n), the student finds 
φ(n) - 1 mod d instead of d-1 mod φ(n); 
12.  use φ(n) instead of n as the modulus for exponentiation; 
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13.  use n - 1 instead of n as the modulus for exponentiation. 
14. e≠ φ(n) because prom Euler Theorem M φ(n)≡1 mod n so we risk to transmit an 111… 
code. 
 
The errors treated on Massey – Omura cryptosystems are not analytically presented but 
are declared in the Maple algorithm. 
 
> restart; 
`crypt/alphabet` := `abcdefghijklmnopqrstuvwxyz` 
||`ABCDEFGHIJKLMNOPQRSTUVWXYZ` 
||```1234567890-=~!@#$£%^&*()_+` 
||` ,./<>?;':"[]{}|    `: 
> ne_numra := proc(st, string)  
local ll, nn, ss, ii;   
ll := length(st); 
if ll = 0 then RETURN(0) fi;  
nn := 1; 
for ii to ll do  
ss := SearchText(substring(st, ii .. ii),`crypt/alphabet`); 
nn := 100*nn + ss  
od; 
nn - 10^(2*ll)  
end: 
> ne_germa := proc(nn, integer)  
local ss, mm, ll, pp, ii, ans; mm := nn; 
ll := floor(1/2*trunc(evalf(log10(mm))))+1; 
ans := ``; for ii to ll do mm := mm/100; 
pp := 100*frac(mm); 
ss := substring(`crypt/alphabet`, pp..pp); 
ans := cat(ss, ans); mm := trunc(mm) 
od; ans end: 
> with(numtheory): with(RandomTools):with(linalg): 
> rg:=2^15:phi(rg); 

 
> p:=Generate(posint(range=rg)): if (type(p,prime))  then  p  else Change the private key 
end if;  

 
> q:=Generate(posint(range=rg)): if (type(p,prime))  then  q  else Change the private key 
end if; 

 
> n:=p*q; #celesi privat 

 
> n1:=phi(n); 

 
> e:=Generate(posint(range=n1));  e1:=change the key_e: 

16384

32611

7241

n := 236136251

n1 := 217573920
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> if (gcd(e,n1)=1) then d:=modp((1/e),n1) else e1 end if; 

 
> if (gcd(e,n1)<>1 or gcd(e,n)<>1 or gcd(e,n-1)<>1 or d=modp((1/e),n-1) ) then e1 end 
if; 
> if (d=modp((1/e),n) or e=d or (e,p)=1 or (e,q)=1 
> if (gcd(n1,e)=1) then n2:=modp((1/e),d)  end if: 
> TekstiHapur:=Array([ALG,EBR,A_A,ND_,GEO,MET,RY_]): 
> Mesazhi:=map(ne_numra,TekstiHapur); 

 
> m0:=ArrayNumElems(TekstiHapur): 
> for i from 1 to m0 do 
C1[i]:=Mesazhi[i]&^e mod n 
end do: 
> for i from 1 to m0 do  
if (C1[i]= C1[i]&^d mod (n1) or C1[i]=C1[i]&^n2)then e1 end if 
end do; 
> C:=array([C1[1],C1[2],C1[3],C1[4],C1[5],C1[6],C1[7]]); 

 
> for i from 1 to m0 do 
C2[i]:=C1[i]&^d mod n  
end do: 
> for i from 1 to m0 do  
if (C2[i]=C2[i]&^e mod n1)then u1 end if 
end do; 
> M:=array([C[1],C[2],C[3],C2[4],C2[5],C2[6],C2[7]]): 
> M2_:=map(ne_germa,M2); 

 
 
6. Conclusions: 
 
 To generate strong (diagnostic) examples and exercices, we have created Maple 
algorithms that avoid generating the wrong  keys or parameters for wich the 
cryptosystem is at risc from possible eavesdropper and also avoid coming at the wright 
answer following the wrong method for some errors that students usually do. In princip 
the algorithms make possible to generate exercices who do not allow any of the  cases 
described in each of cryptosystems and protocols presented above to be possible during 
the system steps calculation.  
 The meaning of this work is not only to generate strong or diagnostic examples 
and exercices but also to considerate possible parameter values that makes those 
cryptosystems more secure and more efficient.  
 It also can be used to define new hybrid algorithms as EMO1, EMO2 if we 
implement them over Elliptic Curves. 

e := 118269623

d := 107283047

Mesazhi  := 273833 , 312844 , 277827 , 403078 , 333141 , 393146 , 445178[ ]

C  := 51926720 , 162100431 , 143317886 , 127318009 , 11462824 , 221145951 , 51193036[ ]

M2_ := ALG, EBR, A_A, ND_, GEO, MET, RY_[ ]
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 Following this idea it is possible to generate strong or diagnostic examples not 
only in public cryptography but alsow in symetric or quantum cryptography. This idea 
can be implementit in other disiplines too. For example in generating financial 
mathemati exercices or micro economy exercices. Etc... 
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